Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Maximum Consensus over Noisy Links (2403.18509v2)

Published 27 Mar 2024 in cs.DC, cs.LG, and eess.SP

Abstract: We introduce a distributed algorithm, termed noise-robust distributed maximum consensus (RD-MC), for estimating the maximum value within a multi-agent network in the presence of noisy communication links. Our approach entails redefining the maximum consensus problem as a distributed optimization problem, allowing a solution using the alternating direction method of multipliers. Unlike existing algorithms that rely on multiple sets of noise-corrupted estimates, RD-MC employs a single set, enhancing both robustness and efficiency. To further mitigate the effects of link noise and improve robustness, we apply moving averaging to the local estimates. Through extensive simulations, we demonstrate that RD-MC is significantly more robust to communication link noise compared to existing maximum-consensus algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Trans. Automat. Contr., vol. 51, no. 3, pp. 401–420, Mar. 2006.
  2. A. Papachristodoulou, A. Jadbabaie, and U. Münz, “Effects of delay in multi-agent consensus and oscillator synchronization,” IEEE Trans. Automat. Contr., vol. 55, no. 6, pp. 1471–1477, June 2010.
  3. M. Goldenbaum and S. Stanczak, “Robust analog function computation via wireless multiple-access channels,” IEEE Trans. Commun., vol. 61, no. 9, pp. 3863–3877, Sep. 2013.
  4. I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed LMS for consensus-based in-network adaptive processing,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2365–2382, 2009.
  5. S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, “Optimal periodic sensor scheduling in networks of dynamical systems,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3055–3068, 2014.
  6. I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc wsns with noisy links—part I: Distributed estimation of deterministic signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, Jan. 2008.
  7. L. M. Borges, F. J. Velez, and A. S. Lebres, “Survey on the characterization and classification of wireless sensor network applications,” IEEE Commun. Surv. Tutor., vol. 16, no. 4, pp. 1860–1890, 2014.
  8. M. Ruan, H. Gao, and Y. Wang, “Secure and privacy-preserving consensus,” IEEE Trans. Automat. Contr., vol. 64, no. 10, pp. 4035–4049, 2019.
  9. Y. Zhang, Z. Peng, G. Wen, J. Wang, and T. Huang, “Privacy preserving-based resilient consensus for multiagent systems via state decomposition,” IEEE Trans. Control. Netw. Syst., vol. 10, no. 3, pp. 1172–1183, 2023.
  10. J. Zhang, J. Lu, J. Liang, and K. Shi, “Privacy-preserving average consensus in multiagent systems via partial information transmission,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, pp. 2781–2791, 2023.
  11. X. Chen, L. Huang, K. Ding, S. Dey, and L. Shi, “Privacy-preserving push-sum average consensus via state decomposition,” IEEE Trans. Automat. Contr., vol. 68, no. 12, pp. 7974–7981, 2023.
  12. A.-R. Lagos, H. E. Psillakis, and A. K. Gkesoulis, “Almost-sure finite-time stochastic min-max consensus,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 70, no. 9, pp. 3509–3513, 2023.
  13. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.
  14. Y. Zhang and S. Li, “Distributed biased min-consensus with applications to shortest path planning,” IEEE Trans. Automat. Contr., vol. 62, no. 10, pp. 5429–5436, Oct. 2017.
  15. J. Hu, Q. Sun, M. Zhai, and B. Wang, “Privacy-preserving consensus strategy for secondary control in microgrids against multilink false data injection attacks,” IEEE Trans. Ind. Inform., vol. 19, no. 10, pp. 10 334–10 343, 2023.
  16. H. Rezaee and F. Abdollahi, “Average consensus over high-order multiagent systems,” IEEE Trans. Automat. Contr., vol. 60, no. 11, pp. 3047–3052, Nov. 2015.
  17. G. Oliva, R. Setola, and C. N. Hadjicostis, “Distributed finite-time average-consensus with limited computational and storage capability,” IEEE Trans. Control. Netw. Syst., vol. 4, no. 2, pp. 380–391, June 2017.
  18. W. Chen, L. Liu, and G.-P. Liu, “Privacy-preserving distributed economic dispatch of microgrids: A dynamic quantization-based consensus scheme with homomorphic encryption,” IEEE Trans. Smart Grid, vol. 14, no. 1, pp. 701–713, 2023.
  19. D. Deplano, N. Bastianello, M. Franceschelli, and K. H. Johansson, “A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence,” in Proc. IEEE Conf. Decis. Control, 2023, pp. 6442–6448.
  20. L. Rong, Y. Kan, X. Xie, G.-P. Jiang, and S. Xu, “Edge-preserving consensus via non-recursive filters: A parallel system design,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 70, no. 1, pp. 181–185, 2023.
  21. L. Gao, Y. Zhou, X. Chen, R. Cai, G. Chen, and C. Li, “Privacy-preserving dynamic average consensus via random number perturbation,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 70, no. 4, pp. 1490–1494, 2023.
  22. E. Montijano, J. I. Montijano, C. Sagüés, and S. Martínez, “Robust discrete time dynamic average consensus,” Automatica, vol. 50, no. 12, pp. 3131–3138, 2014.
  23. M. Franceschelli, A. Giua, and A. Pisano, “Finite-time consensus on the median value with robustness properties,” IEEE Trans. Automat. Contr., vol. 62, no. 4, pp. 1652–1667, 2017.
  24. S. Yu, Y. Chen, and S. Kar, “Dynamic median consensus over random networks,” in Proc. IEEE Conf. Decis. Control, 2021, pp. 5695–5702.
  25. M. Abdelrahim, J. M. Hendrickx, and W. Heemels, “Max-consensus in open multi-agent systems with gossip interactions,” in Proc. IEEE Conf. Decis. Control, 2017, pp. 4753–4758.
  26. A. Nowzari and M. G. Rabbat, “Improved bounds for max consensus in wireless networks,” IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 2, pp. 305–319, June 2019.
  27. S. Zhang, C. Tepedelenlioǧlu, M. K. Banavar, and A. Spanias, “Max consensus in sensor networks: Non-linear bounded transmission and additive noise,” IEEE Sens. J., vol. 16, no. 24, pp. 9089–9098, Dec. 2016.
  28. G. Muniraju, C. Tepedelenlioglu, and A. Spanias, “Analysis and design of robust max consensus for wireless sensor networks,” IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 4, pp. 779–791, Dec. 2019.
  29. N. K. D. Venkategowda and S. Werner, “Privacy-preserving distributed maximum consensus,” IEEE Signal Process. Lett., vol. 27, pp. 1839–1843, Oct. 2020.
  30. M. Lippi, A. Furchì, A. Marino, and A. Gasparri, “An adaptive distributed protocol for finite-time infimum or supremum dynamic consensus,” IEEE Control Syst. Lett., vol. 7, pp. 401–406, 2023.
  31. D. Deplano, M. Franceschelli, and A. Giua, “Dynamic min and max consensus and size estimation of anonymous multiagent networks,” IEEE Trans. Automat. Contr., vol. 68, no. 1, pp. 202–213, 2023.
  32. E. Lari, V. C. Gogineni, R. Arablouei, and S. Werner, “Resource-efficient federated learning robust to communication errors,” in Proc. IEEE Stat. Signal Process. Workshop, 2023, pp. 265–269.
  33. ——, “Continual local updates for federated learning with enhanced robustness to link noise,” in Proc. Asia-Pacific Signal Inf. Process. Assoc., 2023, pp. 1199–1203.
  34. A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Automat. Contr., vol. 54, no. 1, pp. 48–61, Jan. 2009.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com