Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploring the pre-inflationary dynamics in loop quantum cosmology with a DBI scalar field

Published 27 Mar 2024 in gr-qc | (2403.18289v2)

Abstract: Loop quantum cosmology is a symmetry-reduced application of loop quantum gravity. The theory predicts a bounce for the universe at the Planck scale and resolves the singularity of standard cosmology. The dynamics is also governed by an effective Hamiltonian, which predicts a modified Friedmann equation containing the quadratic terms of the energy density. The term plays an essential role in the high energy regime, but the equations return to the standard form in the low energy regime. The evolution of the universe in the pre-inflationary period is studied in the framework of loop quantum cosmology, where the DBI scalar field is assumed to be the dominant component of the universe. Using the numerical method, we provide the evolution of the DBI field. The background evolution shows that there are three phases as: bouncing phase, transition phase and slow-roll inflationary phase. There is also a short period of super-inflation just at the beginning of the bounce phase. The field first climbs the potential and then reaches the turning point where $\dot{\phi}$ disappears and the potential energy becomes the dominant part of the energy density. This is the time when the slow roll inflation begins and the field slowly rolls down the potential. The results indicate that there are a few e-fold expansions in the bounce phase, about $N = 3.5-4$, and the universe experiences about $N = 59$ e-fold expansions in the slow-roll inflation phase.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. P. A. R. Ade et al. (Planck), Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571, A22 (2014), arXiv:arXiv:1303.5082 [astro-ph.CO] .
  2. P. A. R. Ade et al. (Planck), Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594, A20 (2016), arXiv:arXiv:1502.02114 [astro-ph.CO] .
  3. Y. Akrami et al. (Planck), Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
  4. A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91, 99 (1980).
  5. A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D23, 347 (1981), [Adv. Ser. Astrophys. Cosmol.3,139(1987)].
  6. A. Albrecht and P. J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Physical Review Letters 48, 1220 (1982).
  7. A. D. Linde, Chaotic inflation, Physics Letters B 129, 177 (1983).
  8. G. Barenboim and W. H. Kinney, Slow roll in simple non-canonical inflation, JCAP 0703, 014, arXiv:astro-ph/0701343 [astro-ph] .
  9. S. Unnikrishnan, V. Sahni, and A. Toporensky, Refining inflation using non-canonical scalars, JCAP 1208, 018, arXiv:1205.0786 [astro-ph.CO] .
  10. K. Rezazadeh, K. Karami, and P. Karimi, Intermediate inflation from a non-canonical scalar field, JCAP 1509 (09), 053, arXiv:1411.7302 [gr-qc] .
  11. K. Saaidi, A. Mohammadi, and T. Golanbari, Light of Planck-2015 on Noncanonical Inflation, Adv. High Energy Phys. 2015, 926807 (2015), arXiv:1708.03675 [gr-qc] .
  12. M. Fairbairn and M. H. G. Tytgat, Inflation from a tachyon fluid?, Phys. Lett. B546, 1 (2002), arXiv:hep-th/0204070 [hep-th] .
  13. S. Mukohyama, Brane cosmology driven by the rolling tachyon, Phys. Rev. D66, 024009 (2002), arXiv:hep-th/0204084 [hep-th] .
  14. A. Feinstein, Power law inflation from the rolling tachyon, Phys. Rev. D66, 063511 (2002), arXiv:hep-th/0204140 [hep-th] .
  15. T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D66, 021301 (2002), arXiv:hep-th/0204150 [hep-th] .
  16. M. Spalinski, On Power law inflation in DBI models, JCAP 0705, 017, arXiv:hep-th/0702196 [hep-th] .
  17. D. Bessada, W. H. Kinney, and K. Tzirakis, Inflationary potentials in DBI models, JCAP 0909, 031, arXiv:0907.1311 [gr-qc] .
  18. J. M. Weller, C. van de Bruck, and D. F. Mota, Inflationary predictions in scalar-tensor DBI inflation, JCAP 1206, 002, arXiv:1111.0237 [astro-ph.CO] .
  19. K.-i. Maeda and K. Yamamoto, Stability analysis of inflation with an su (2) gauge field, Journal of Cosmology and Astroparticle Physics 2013 (12), 018.
  20. A. A. Abolhasani, R. Emami, and H. Firouzjahi, Primordial anisotropies in gauged hybrid inflation, Journal of Cosmology and Astroparticle Physics 2014 (05), 016.
  21. M. Tirandari, K. Saaidi, and A. Mohammadi, Anisotropic inflation in brans-dicke gravity with a non-abelian gauge field, Phys. Rev. D 98, 043516 (2018).
  22. T. Golanbari, A. Mohammadi, and K. Saaidi, Brane inflation driven by noncanonical scalar field, Physical Review D 89, 103529 (2014).
  23. A. Mohammadi, T. Golanbari, and J. Enayati, Brane inflation and trans-Planckian censorship conjecture, Phys. Rev. D 104, 123515 (2021a), arXiv:2012.01512 [hep-th] .
  24. A. Berera, Warm inflation, Physical Review Letters 75, 3218 (1995).
  25. A. Berera, Warm inflation in the adiabatic regime—a model, an existence proof for inflationary dynamics in quantum field theory, Nuclear Physics B 585, 666 (2000).
  26. L. M. Hall, I. G. Moss, and A. Berera, Scalar perturbation spectra from warm inflation, Physical Review D 69, 083525 (2004).
  27. A. Mohammadi, K. Saaidi, and T. Golanbari, Tachyon constant-roll inflation, Phys. Rev. D97, 083006 (2018), arXiv:1801.03487 [hep-ph] .
  28. A. Mohammadi, K. Saaidi, and H. Sheikhahmadi, Constant-roll approach to non-canonical inflation, Phys. Rev. D100, 083520 (2019), arXiv:1803.01715 [astro-ph.CO] .
  29. T. Golanbari, A. Mohammadi, and K. Saaidi, Observational constraints on DBI constant-roll inflation, Phys. Dark Univ. 27, 100456 (2020), arXiv:1808.07246 [gr-qc] .
  30. A. Mohammadi, T. Golanbari, and K. Saaidi, Beta-function formalism for k-essence constant-roll inflation, Phys. Dark Univ. 28, 100505 (2020b), arXiv:1912.07006 [gr-qc] .
  31. A. Mohammadi, Holographic warm inflation, Phys. Rev. D 104, 123538 (2021), arXiv:2109.00247 [gr-qc] .
  32. A. Mohammadi, Constant-roll inflation driven by holographic dark energy, Phys. Dark Univ. 36, 101055 (2022), arXiv:2203.06643 [gr-qc] .
  33. C. Rovelli, Quantum gravity (Cambridge university press, 2004).
  34. T. Thiemann, Modern canonical quantum general relativity (Cambridge University Press, 2008).
  35. M. Bojowald, Loop quantum cosmology, Living Rev. Rel. 11, 4 (2008).
  36. K. Giesel and H. Sahlmann, From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity, PoS QGQGS2011, 002 (2011), arXiv:1203.2733 [gr-qc] .
  37. A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Class. Quant. Grav. 28, 213001 (2011), arXiv:1108.0893 [gr-qc] .
  38. A. Ashtekar, J. Olmedo, and P. Singh, Quantum Transfiguration of Kruskal Black Holes, Phys. Rev. Lett. 121, 241301 (2018), arXiv:1806.00648 [gr-qc] .
  39. P. Singh, Are loop quantum cosmos never singular?, Class. Quant. Grav. 26, 125005 (2009), arXiv:0901.2750 [gr-qc] .
  40. P. Singh, Loop quantum cosmology and the fate of cosmological singularities, Bull. Astron. Soc. India 42, 121 (2014), arXiv:1509.09182 [gr-qc] .
  41. A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang: Improved dynamics, Phys. Rev. D 74, 084003 (2006), arXiv:gr-qc/0607039 .
  42. A. Ashtekar, A. Corichi, and P. Singh, Robustness of key features of loop quantum cosmology, Phys. Rev. D 77, 024046 (2008), arXiv:0710.3565 [gr-qc] .
  43. P. Singh, Numerical loop quantum cosmology: an overview, Class. Quant. Grav. 29, 244002 (2012), arXiv:1208.5456 [gr-qc] .
  44. P. Diener, B. Gupt, and P. Singh, Numerical simulations of a loop quantum cosmos: robustness of the quantum bounce and the validity of effective dynamics, Class. Quant. Grav. 31, 105015 (2014), arXiv:1402.6613 [gr-qc] .
  45. A. Ashtekar and D. Sloan, Loop quantum cosmology and slow roll inflation, Phys. Lett. B 694, 108 (2011), arXiv:0912.4093 [gr-qc] .
  46. I. Agullo, A. Ashtekar, and W. Nelson, The pre-inflationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations, Class. Quant. Grav. 30, 085014 (2013), arXiv:1302.0254 [gr-qc] .
  47. A. A. Sen, Tachyon matter in loop quantum cosmology, Phys. Rev. D 74, 043501 (2006), arXiv:gr-qc/0604050 .
  48. H.-H. Xiong and J.-Y. Zhu, Tachyon field in loop quantum cosmology: Inflation and evolution picture, Phys. Rev. D 75, 084023 (2007), arXiv:gr-qc/0702003 .
  49. K. Xiao, Tachyon field in loop cosmology, Phys. Lett. B 811, 135859 (2020).
  50. J. Bhadra and U. Debnath, Dynamical Study of DBI-essence in Loop Quantum Cosmology and Braneworld, Eur. Phys. J. C 72, 2087 (2012), arXiv:1207.2144 [gr-qc] .
  51. E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70, 103505 (2004), arXiv:hep-th/0310221 .
  52. E. J. Copeland, S. Mizuno, and M. Shaeri, Cosmological Dynamics of a Dirac-Born-Infeld field, Phys. Rev. D 81, 123501 (2010), arXiv:1003.2881 [hep-th] .
  53. A. Ashtekar, M. Bojowald, and J. Lewandowski, Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys. 7, 233 (2003), arXiv:gr-qc/0304074 .
  54. I. Agullo and N. A. Morris, Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra, Phys. Rev. D 92, 124040 (2015), arXiv:1509.05693 [gr-qc] .
  55. B.-F. Li, P. Singh, and A. Wang, Genericness of pre-inflationary dynamics and probability of the desired slow-roll inflation in modified loop quantum cosmologies, Phys. Rev. D 100, 063513 (2019), arXiv:1906.01001 [gr-qc] .

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.