Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Loss Weighting for Machine Learning Interatomic Potentials (2403.18122v1)

Published 26 Mar 2024 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: Training machine learning interatomic potentials often requires optimizing a loss function composed of three variables: potential energies, forces, and stress. The contribution of each variable to the total loss is typically weighted using fixed coefficients. Identifying these coefficients usually relies on iterative or heuristic methods, which may yield sub-optimal results. To address this issue, we propose an adaptive loss weighting algorithm that automatically adjusts the loss weights of these variables during the training of potentials, dynamically adapting to the characteristics of the training dataset. The comparative analysis of models trained with fixed and adaptive loss weights demonstrates that the adaptive method not only achieves a more balanced predictions across the three variables but also improves overall prediction accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.