Efficient Hamiltonian learning from Gibbs states
Abstract: We describe a novel algorithm that learns a Hamiltonian from local expectations of its Gibbs state using the free energy variational principle. The algorithm avoids the need to compute the free energy directly, instead using efficient estimates of the derivatives of the free energy with respect to perturbations of the state. These estimates are based on a new entropy bound for Lindblad evolutions, which is of independent interest. We benchmark the algorithm by performing black-box learning of a nearest-neighbour Hamiltonian on a 100-qubit spin chain. A implementation of the algorithm with a Python front-end is made available for use.
- Brian Swingle and Isaac H. Kim “Reconstructing Quantum States from Local Data” In Physical Review Letters 113.26 American Physical Society (APS), 2014 DOI: 10.1103/physrevlett.113.260501
- Hamza Fawzi, Omar Fawzi and Samuel O. Scalet “Certified algorithms for equilibrium states of local quantum Hamiltonians” DOI: 10.48550/arXiv.2311.18706
- Huzihiro Araki and Geoffrey L. Sewell “KMS conditions and local thermodynamical stability of quantum lattice systems” In Communications in Mathematical Physics 52.2 Springer ScienceBusiness Media LLC, 1977, pp. 103–109 DOI: 10.1007/bf01625778
- “Sample-efficient learning of interacting quantum systems” In Nature Physics 17.8 Springer ScienceBusiness Media LLC, 2021, pp. 931–935 DOI: 10.1038/s41567-021-01232-0
- Jeongwan Haah, Robin Kothari and Ewin Tang “Optimal learning of quantum Hamiltonians from high-temperature Gibbs states” In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) IEEE, 2022 DOI: 10.1109/focs54457.2022.00020
- “Learning quantum Hamiltonians at any temperature in polynomial time” arXiv, 2023 DOI: 10.48550/ARXIV.2310.02243
- Andi Gu, Lukasz Cincio and Patrick J. Coles “Practical Hamiltonian learning with unitary dynamics and Gibbs states” In Nature Communications 15.1 Springer ScienceBusiness Media LLC, 2024 DOI: 10.1038/s41467-023-44008-1
- Tim J. Evans, Robin Harper and Steven T. Flammia “Scalable Bayesian Hamiltonian learning” arXiv, 2019 DOI: 10.48550/ARXIV.1912.07636
- “Practical Quantum State Tomography for Gibbs states” arXiv, 2021 DOI: 10.48550/ARXIV.2112.10418
- Eyal Bairey, Itai Arad and Netanel H. Lindner “Learning a Local Hamiltonian from Local Measurements” In Physical Review Letters 122.2 American Physical Society (APS), 2019 DOI: 10.1103/physrevlett.122.020504
- Eberhard E. Muller “Note on relative entropy and thermodynamical limit” In Helvetica Physica Acta 58 Birkhäuser Verlag Basel, 1985, pp. 622–632 URL: https://www.e-periodica.ch/cntmng?pid=hpa-001:1985:58::1152
- G. Lindblad “On the generators of quantum dynamical semigroups” In Communications in Mathematical Physics 48.2 Springer ScienceBusiness Media LLC, 1976, pp. 119–130 DOI: 10.1007/bf01608499
- “Quantum Dynamical Semigroups and Applications” Springer Berlin Heidelberg, 2007 DOI: 10.1007/3-540-70861-8
- Frank Hansen and Gert K. Pedersen “Jensen’s Operator Inequality” In Bulletin of the London Mathematical Society 35.04 Wiley, 2003, pp. 553–564 DOI: 10.1112/s0024609303002200
- Adrian E. Feiguin and Steven R. White “Finite-temperature density matrix renormalization using an enlarged Hilbert space” In Physical Review B 72.22 American Physical Society (APS), 2005 DOI: 10.1103/physrevb.72.220401
- Erling D. Andersen and Knud D. Andersen “The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm” In High Performance Optimization Springer US, 2000, pp. 197–232 DOI: 10.1007/978-1-4757-3216-0˙8
- “CVXPY: a python-embedded modeling language for convex optimization” In J. Mach. Learn. Res. 17.1 JMLR.org, 2016, pp. 2909–2913
- “Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding” In Journal of Optimization Theory and Applications 169.3 Springer ScienceBusiness Media LLC, 2016, pp. 1042–1068 DOI: 10.1007/s10957-016-0892-3
- “Determining a local Hamiltonian from a single eigenstate” In Quantum 3 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2019, pp. 159 DOI: 10.22331/q-2019-07-08-159
- Ola Bratteli and Derek W. Robinson “Operator Algebras and Quantum Statistical Mechanics I” Springer Berlin Heidelberg, 1987 DOI: 10.1007/978-3-662-02520-8
- Masamichi Takesaki “Fundamentals of Banach Algebras and C*-Algebras” In Theory of Operator Algebras I Springer New York, 1979, pp. 1–57 DOI: 10.1007/978-1-4612-6188-9˙1
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.