Papers
Topics
Authors
Recent
2000 character limit reached

Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design (2403.18044v2)

Published 26 Mar 2024 in math.OC, cs.LG, cs.NA, math.DS, math.NA, and physics.flu-dyn

Abstract: Polytopic autoencoders provide low-di-men-sion-al parametrizations of states in a polytope. For nonlinear PDEs, this is readily applied to low-dimensional linear parameter-varying (LPV) approximations as they have been exploited for efficient nonlinear controller design via series expansions of the solution to the state-dependent Riccati equation. In this work, we develop a polytopic autoencoder for control applications and show how it improves on standard linear approaches in view of LPV approximations of nonlinear systems. We discuss how the particular architecture enables exact representation of target states and higher order series expansions of the nonlinear feedback law at little extra computational effort in the online phase and how the linear though high-dimensional and nonstandard Lyapunov equations are efficiently computed during the offline phase. In a numerical study, we illustrate the procedure and how this approach can reliably outperform the standard linear-quadratic regulator design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. State-dependent Riccati equation feedback stabilization for nonlinear PDEs. Adv. Comput. Math., 49(1):9, 2023. doi:10.1007/s10444-022-09998-4.
  2. A. Alla and A. Pacifico. A POD approach to identify and control PDEs online through state dependent Riccati equations. e-print 2402.08186, arXiv, 2024. Optimization and Control (math.OC). doi:10.48550/arXiv.2402.08186.
  3. Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Methods Eng., 92(10):891–916, 2012. doi:10.1002/nme.4371.
  4. Self-scheduled H∞subscript𝐻{H}_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control of linear parameter-varying systems: a design example. Automatica, 31(9):1251–1261, 1995. doi:10.1016/0005-1098(95)00038-X.
  5. Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl., 107(1):1–33, 2000. doi:10.1023/A:1004607114958.
  6. P. Benner and J. Heiland. Exponential stability and stabilization of extended linearizations via continuous updates of Riccati-based feedback. Int. J. Robust Nonlinear Control, 28(4):1218–1232, 2018. doi:10.1002/rnc.3949.
  7. An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations. Appl. Numer. Math., 108:125–142, 2016. doi:10.1016/j.apnum.2016.05.006.
  8. Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation. Appl. Math. Optim., 80(3):599–641, 2019. doi:10.1007/s00245-019-09586-x.
  9. Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder. SIAM J. Sci. Comput., 45(2):A289–A311, 2023. doi:10.1137/21M1466657.
  10. T. Çimen. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. J. Guid. Control Dyn., 35(4):1025–1047, 2012. doi:10.2514/1.55821.
  11. A. Das and J. Heiland. Low-order linear parameter varying approximations for nonlinear controller design for flows. e-print 2311.05305, arXiv, 2023. Optimization and Control (math.OC). doi:10.48550/arXiv.2311.05305.
  12. S. J. Dodds. Feedback Control: Linear, Nonlinear and Robust Techniques and Design with Industrial Applications, chapter Sliding Mode Control and Its Relatives, pages 705–792. Advanced Textbooks in Control and Signal Processing. Springer, London, 2015. doi:10.1007/978-1-4471-6675-7_10.
  13. S. Fresca and A. Manzoni. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng., 388:114181, 2022. doi:10.1016/j.cma.2021.114181.
  14. J. Heiland and Y. Kim. Polytopic autoencoders with smooth clustering for reduced-order modelling of flows. e-print 2401.10620, arXiv, 2024. Machine Learning (cs.LG). doi:10.48550/arXiv.2401.10620.
  15. Code, data and results for numerical experiments in “Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design” (version 1.0), March 2024. doi:10.5281/zenodo.10783695.
  16. J. Heiland and S. W. R. Werner. Low-complexity linear parameter-varying approximations of incompressible Navier-Stokes equations for truncated state-dependent Riccati feedback. IEEE Control Syst. Lett., 7:3012–3017, 2023. doi:10.1109/LCSYS.2023.3291231.
  17. P. V. Kokotovic. The joy of feedback: nonlinear and adaptive. IEEE Contr. Syst. Mag., 12(3):7–17, 1992. doi:10.1109/37.165507.
  18. An L⁢D⁢LT𝐿𝐷superscript𝐿𝑇LDL^{T}italic_L italic_D italic_L start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT factorization based ADI algorithm for solving large-scale differential matrix equations. Proc. Appl. Math. Mech., 14(1):827–828, 2014. doi:10.1002/pamm.201410394.
  19. E. D. Sontag. Mathematical Control Theory, volume 6 of Texts in Applied Mathematics. Springer, New York, second edition, 1998. doi:10.1007/978-1-4612-0577-7.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.