Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Universal entropy transport far from equilibrium across the BCS-BEC crossover (2403.17838v1)

Published 26 Mar 2024 in cond-mat.quant-gas and physics.atom-ph

Abstract: The transport properties of strongly interacting fermionic systems can reveal exotic states of matter, but experiments and theory have predominantly focused on bulk systems in the hydrodynamic limit describable with linear response coefficients such as electrical and thermal conductivity. In a ballistic channel connecting two superfluid reservoirs, recent experiments revealed a far-from-equilibrium regime beyond linear hydrodynamics where particle and entropy currents respond nonlinearly to biases of chemical potential and temperature, and their ratio is robust to the channel geometry. However, the origin of this robustness and its relation to the strong interparticle interactions remain unknown. Here, we study the coupled transport of particles and entropy tuning the interaction across the Bardeen-Cooper-Schrieffer to Bose-Einstein condensate (BCS-BEC) crossover, the reservoir degeneracy across the superfluid phase transition, as well as the local potentials and confinement of the channel. Surprisingly, the entropy advectively transported per particle depends only on the interactions and reservoir degeneracy and not on the details of the channel, suggesting that this property has its origin in the universal equilibrium properties of the reservoirs. In contrast, the magnitudes of the advective and diffusive entropy currents vary significantly with the channel details. The advective current increases monotonically towards the BEC side, which can be largely explained by the estimated superfluid gap in the channel. The Wiedemann-Franz law that links the advective and diffusive currents in Fermi liquids is most egregiously violated at unitarity, suggesting a change in the nature of the excitations responsible for entropy diffusion near unitarity. These observations pose fundamental questions regarding transport phenomena in strongly interacting Fermi systems far from equilibrium.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124 (2015).
  2. W. Zwerger, ed., The BCS-BEC Crossover and the Unitary Fermi Gas, Lecture notes in physics No. 836 (Springer, Heidelberg, 2012).
  3. L. W. Clark, L. Feng, and C. Chin, Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition, Science 354, 606 (2016).
  4. B. Ko, J. W. Park, and Y. Shin, Kibble–Zurek universality in a strongly interacting Fermi superfluid, Nature Physics 15, 1227 (2019).
  5. P. W. Phillips, N. E. Hussey, and P. Abbamonte, Stranger than metals, Science 377, eabh4273 (2022).
  6. H. Liu and J. Sonner, Quantum many-body physics from a gravitational lens, Nature Reviews Physics 2, 615 (2020).
  7. S. A. Hartnoll and A. P. Mackenzie, Colloquium: Planckian dissipation in metals, Reviews of Modern Physics 94, 041002 (2022).
  8. E. Elliott, J. Joseph, and J. Thomas, Anomalous Minimum in the Shear Viscosity of a Fermi Gas, Physical Review Letters 113, 020406 (2014).
  9. T. Enss and J. H. Thywissen, Universal Spin Transport and Quantum Bounds for Unitary Fermions, Annual Review of Condensed Matter Physics 10, 85 (2019).
  10. C. Grenier, C. Kollath, and A. Georges, Thermoelectric transport and Peltier cooling of cold atomic gases, Comptes Rendus Physique 17, 1161 (2016).
  11. R. Haussmann and W. Zwerger, Thermodynamics of a trapped unitary Fermi gas, Physical Review A 78, 063602 (2008).
  12. Q. Chen, J. Stajic, and K. Levin, Thermodynamics of Interacting Fermions in Atomic Traps, Physical Review Letters 95, 260405 (2005).
  13. M. Inguscio, W. Ketterle, and C. Salomon, eds., Ultra-cold Fermi gases, Proceedings of the International School of Physics ”Enrico Fermi” (IOS Press ; Società italiana di fisica, 2007).
  14. F. Setiawan and J. Hofmann, Analytic approach to transport in superconducting junctions with arbitrary carrier density, Physical Review Research 4, 043087 (2022).
  15. T. Martin and R. Landauer, Wave-packet approach to noise in multichannel mesoscopic systems, Physical Review B 45, 1742 (1992).
  16. I. P. Batra, Origin of conductance quantization, Surface Science 395, 43 (1998).
  17. H.-Y. Choi, Y. Bang, and D. K. Campbell, Andreev reflections in the pseudogap state of cuprate superconductors, Physical Review B 61, 9748 (2000).
  18. R. Haussmann, M. Punk, and W. Zwerger, Spectral functions and rf response of ultracold fermionic atoms, Physical Review A 80, 063612 (2009).
  19. K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zero-temperature limit, Journal of Physics: Condensed Matter 16, 5187 (2004).
  20. H. Smith and H. H. Jensen, Transport phenomena, Oxford science publications (Clarendon Press ; Oxford University Press, Oxford [England] : New York, 1989).
  21. S. S. Pershoguba and L. I. Glazman, Thermopower and thermal conductance of a superconducting quantum point contact, Physical Review B 99, 134514 (2019).
  22. S. Uchino, Role of Nambu-Goldstone modes in the fermionic-superfluid point contact, Physical Review Research 2, 023340 (2020).
  23. S. Uchino and J.-P. Brantut, Bosonic superfluid transport in a quantum point contact, Physical Review Research 2, 023284 (2020).
  24. G. Su, J. Chen, and L. Chen, Low-temperature behavior of a weakly interacting Fermi gas trapped in a power-law potential, Physics Letters A 315, 109 (2003).
  25. M. Jäger and J. H. Denschlag, Precise photoexcitation measurement of Tan’s contact in the entire BCS-BEC crossover (2023), arXiv:2309.17305 [cond-mat].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.