Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Linear dynamics and classical tests of the gravitational quantum field theory (2403.17619v1)

Published 26 Mar 2024 in gr-qc, hep-ph, and hep-th

Abstract: We explore the new physics phenomena of gravidynamics governed by the inhomogeneous spin gauge symmetry based on the gravitational quantum field theory. Such a gravidynamics enables us to derive the generalized Einstein equation and an equation beyond it. To simplify the analyses, we linearize the dynamic equations of gravitational interaction by keeping terms up to the leading order in the dual gravigauge field. We then apply the linearized dynamic equations into two particular gravitational phenomena. First, we consider the linearized equations in the absence of source fields, which is shown to have five physical propagating polarizations as gravitational waves, i.e., two tensor modes, two vector modes, and one scalar, instead of two tensor polarizations in the general relativity. Second, we examine the Newtonian limit in which the gravitational fields and the matter source distribution are weak and static. By deriving the associated Poisson equation, we obtain the exact relation of the fundamental interaction coupling in the gravidynamics with the experimentally measured Newtonian constant. We also make use of nonrelativistic objects and relativistic photons to probe the Newtonian field configurations. In particular, the experiments from the gravitational deflection of light rays and the Shapiro time delay can place stringent constraints on the linearized gravidynamics in the gravitational quantum field theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A. Einstein, The Field Equations of Gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1915, 844 (1915a).
  2. A. Einstein, The foundation of the general theory of relativity., Annalen Phys. 49, 769 (1916).
  3. R. V. Pound and G. A. Rebka, Jr., Apparent Weight of Photons, Phys. Rev. Lett. 4, 337 (1960).
  4. R. V. Pound and J. L. Snider, Effect of Gravity on Gamma Radiation, Phys. Rev. 140, B788 (1965).
  5. R. F. C. Vessot et al., Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Lett. 45, 2081 (1980).
  6. S. B. Lambert and C. Le Poncin-Lafitte, Determination of the relativistic parameter gamma using very long baseline interferometry, Astron. Astrophys. 499, 331 (2009), arXiv:0903.1615 [gr-qc] .
  7. S. Lambert and C. Le Poncin-Lafitte, Improved determination of γ𝛾\gammaitalic_γ by VLBI, Astronomy & Astrophysics 529, A70 (2011).
  8. A. Einstein, Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1915, 831 (1915b).
  9. I. I. Shapiro, Fourth Test of General Relativity, Phys. Rev. Lett. 13, 789 (1964).
  10. B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425, 374 (2003).
  11. C. M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
  12. R. A. Hulse and J. H. Taylor, Discovery of a pulsar in a binary system, Astrophys. J. Lett. 195, L51 (1975).
  13. J. H. Taylor, L. A. Fowler, and P. M. McCulloch, Measurements of general relativistic effects in the binary pulsar PSR 1913+16, Nature 277, 437 (1979).
  14. J. H. Taylor and P. M. McCulloch, Evidence for the existence of gravitational radiation from measurements of the binary pulsar PSR 1913+16, in Ninth Texas Symposium on Relativistic Astrophysics, Vol. 336 (1980) pp. 442–446.
  15. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  16. C.-N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96, 191 (1954).
  17. D. Ivanenko and G. Sardanashvily, The Gauge Treatment of Gravity, Phys. Rept. 94, 1 (1983).
  18. Y.-L. Wu, Gravidynamics, spinodynamics and electrodynamics within the framework of gravitational quantum field theory, Sci. China Phys. Mech. Astron. 66, 260411 (2023), arXiv:2208.03290 [hep-th] .
  19. Y.-L. Wu, Foundations of the Hyperunified Field Theory (World Scientific, 2022).
  20. Q.-Y. Wang, Y. Tang, and Y.-L. Wu, Inflation in Weyl scaling invariant gravity with R3 extensions, Phys. Rev. D 107, 083511 (2023), arXiv:2301.03744 [astro-ph.CO] .
  21. E. Bertschinger, Cosmological dynamics: Course 1, in Les Houches Summer School on Cosmology and Large Scale Structure (Session 60) (1993) pp. 273–348, arXiv:astro-ph/9503125 .
  22. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215, 203 (1992).
  23. S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Cambridge University Press, 2019).
  24. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 2018).
  25. P. Touboul et al. (MICROSCOPE), MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle, Phys. Rev. Lett. 129, 121102 (2022), arXiv:2209.15487 [gr-qc] .
  26. J. Aasi et al. (LIGO Scientific), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  27. F. Acernese et al. (VIRGO), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  28. K. Somiya (KAGRA), Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector, Class. Quant. Grav. 29, 124007 (2012), arXiv:1111.7185 [gr-qc] .
  29. P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna,   (2017), arXiv:1702.00786 [astro-ph.IM] .
  30. W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4, 685 (2017).
  31. J. Luo et al. (TianQin), TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: