Papers
Topics
Authors
Recent
2000 character limit reached

Time-dependent nuclear energy-density functional theory toolkit for neutron star crust: Dynamics of a nucleus in a neutron superfluid (2403.17499v2)

Published 26 Mar 2024 in nucl-th, astro-ph.HE, and cond-mat.supr-con

Abstract: We present a new numerical tool designed to probe the dense layers of neutron star crusts. It is based on the time-dependent Hartree-Fock-Bogoliubov theory with generalized Skyrme nuclear energy-density functionals of the Brussels-Montreal family. We use it to study the time evolution of a nucleus accelerating through superfluid neutron medium in the inner crust of a neutron star. We extract an effective mass in the low velocity limit. We observe a threshold velocity and specify mechanisms of dissipation: phonon emission, Cooper pairs breaking, and vortex rings creation. These microscopic effects are of key importance for understanding various neutron star phenomena. Moreover, the mechanisms we describe are general and apply also to other fermionic superfluids interacting with obstacles like liquid helium or ultracold gases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (119)
  1. Chris L Fryer, “Mass limits for black hole formation,” The Astrophysical Journal 522, 413 (1999).
  2. J. M. Lattimer and M. Prakash, “The physics of neutron stars,” Science 304, 536–542 (2004), https://www.science.org/doi/pdf/10.1126/science.1090720 .
  3. D. G. Yakovlev and C. J. Pethick, “Neutron Star Cooling,” Ann. Rev. Astron. Astrophys. 42, 169–210 (2004).
  4. A. B. Migdal, “Superfluidity and the moments of inertia of nuclei,” Nucl. Phys. 13, 655–674 (1959).
  5. N. Chamel, “Superfluidity and Superconductivity in Neutron Stars,” J. Astrophys. Astron. 38, 43 (2017).
  6. Armen Sedrakian and John W. Clark, “Superfluidity in nuclear systems and neutron stars,” Eur. Phys. J. A 55, 167 (2019).
  7. Nils Andersson, “A superfluid perspective on neutron star dynamics,” Universe 7 (2021), 10.3390/universe7010017.
  8. J. Engel, “Intrinsic-density functionals,” Phys. Rev. C 75, 014306 (2007).
  9. Jérémie Messud, Michael Bender,  and Eric Suraud, “Density functional theory and kohn-sham scheme for self-bound systems,” Phys. Rev. C 80, 054314 (2009).
  10. T Duguet and J Sadoudi, “Breaking and restoring symmetries within the nuclear energy density functional method,” Journal of Physics G: Nuclear and Particle Physics 37, 064009 (2010).
  11. T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K. Yabana, “Time-dependent density functional description of nuclear dynamics,” Rev. Mod. Phys. 88, 045004 (2016).
  12. G. Colò, “Nuclear Density Functional Theory,” Adv. Phys. X 5, 1740061 (2020).
  13. P. Magierski, “Nuclear Reactions and Superfluid Time-Dependent Density Functional Theory,” Progress of Time-Dependent Nuclear Reaction Theory 2, 57–71 (2019).
  14. A. Bulgac, “Time-Dependent Density Functional Theory for Fermionic Superfluids: From Cold Atomic Gases - To Nuclei and Neutron Stars Crust,” Phys. Status Solidi (b) 256, 1800592 (2019).
  15. R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-body Problem (Springer, 1990).
  16. C. Fiolhais, F. Nogueira and M. A. L. Marques, ed., A Primer in Density Functional Theory (Springer Berlin Heidelberg, 2003).
  17. N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441–A1443 (1965).
  18. H. Eschrig, “T>0 ensemble-state Density Functional Theory via Legendre transform,” Phys. Rev. B 82, 205120 (2010).
  19. S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, and E. K. U. Gross, “Exact Conditions in Finite-Temperature Density Functional Theory,” Phys. Rev. Lett. 107, 163001 (2011).
  20. L. N. Oliveira, E. K. U. Gross and W. Kohn, “Density Functional Theory for Superconductors,” Phys. Rev. Lett. 60, 2430–2433 (1988).
  21. O. J. Wacker, R. Kümmel and E. K. U. Gross, “Time-Dependent Density Functional Theory for Superconductors,” Phys. Rev. Lett. 73, 2915–2918 (1994).
  22. M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda and E. K. U. Gross, “Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals,” Phys. Rev. B 72, 024545 (2005).
  23. M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E. K. U. Gross and S. Massidda, “Ab initio theory of superconductivity. ii. application to elemental metals,” Phys. Rev. B 72, 024546 (2005).
  24. A. Bulgac, “Local Density Functional Theory for superfluid fermionic systems: The unitary gas,” Phys. Rev. A 76, 040502 (2007).
  25. Y. Yu and A. Bulgac, “Energy Density Functional Approach to Superfluid Nuclei,” Phys. Rev. Lett. 90, 222501 (2003).
  26. “Boosting materials modelling,” Nat. Mater. 15, 365–365 (2016).
  27. S. Goriely, N. Chamel and J. M. Pearson, “Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing,” Phys. Rev. C 93, 034337 (2016).
  28. “W-BSK Toolkit,” https://wbsk.fizyka.pw.edu.pl/.
  29. J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta and S. Goriely, “Unified equations of state for cold non-accreting neutron stars with Brussels-Montreal functionals - I. Role of symmetry energy,” Mon. Not. Roy. Astron. Soc. 481, 2994–3026 (2018).
  30. O.-J. Wacker, R. Kümmel and E. K. U. Gross, “Time-Dependent Density Functional Theory for Superconductors,” Phys. Rev. Lett. 73, 2915–2918 (1994).
  31. S. Kurth, M. Marques, M. Lüders and E. K. U. Gross, “Local Density Approximation for Superconductors,” Phys. Rev. Lett. 83, 2628–2631 (1999).
  32. A. Bulgac, M. McNeil Forbes and P. Magierski, “The Unitary Fermi Gas: From Monte Carlo to Density Functionals,” in Lecture Notes on Physics: The BCS-BEC Crossover and the Unitary Fermi Gas (Springer-Verlag Berlin Heidelberg, 2012) p. 305.
  33. A. Bulgac, “Time-Dependent Density Functional Theory and the Real-Time Dynamics of Fermi Superfluids,” Annu. Rev. Nucl. 63, 97–121 (2013), https://doi.org/10.1146/annurev-nucl-102212-170631 .
  34. L. G. Cao, U. Lombardo and P. Schuck, “Screening effects in superfluid nuclear and neutron matter within brueckner theory,” Phys. Rev. C 74, 064301 (2006).
  35. N. Chamel, S. Goriely and J. M. Pearson, “Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XI. Stabilizing neutron stars against a ferromagnetic collapse,” Phys. Rev. C 80, 065804 (2009).
  36. N. Chamel, S. Goriely and J. M. Pearson, “Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to 11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPTS00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT neutron-matter gap,” Nucl. Phys. A 812, 72–98 (2008).
  37. S. Goriely, N. Chamel and J. M. Pearson, ‘‘Skyrme–Hartree–Fock–Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing,” Phys. Rev. Lett. 102, 152503 (2009).
  38. N. Chamel, “Effective contact pairing forces from realistic calculations in infinite homogeneous nuclear matter,” Phys. Rev. C 82, 014313 (2010).
  39. S. Jin, K. J. Roche, I. Stetcu, I. Abdurrahman and A. Bulgac, “The LISE package: Solvers for static and Time-Dependent Superfluid Local Density Approximation equations in three dimensions,” Comput. Phys. Commun. 269, 108130 (2021).
  40. A. Bulgac and M. McNeil Forbes, “Time-Dependent Superfluid Local-Density Approximation,” in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (World Scientific, 2013) pp. 397–406.
  41. J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications (Springer International Publishing, 2016).
  42. M. Baldo, E. E. Saperstein,  and S. V. Tolokonnikov, “A realistic model of superfluidity in the neutron star inner crust,” European Physical Journal A 32, 97–108 (2007).
  43. F. Grill, J. Margueron,  and N. Sandulescu, “Cluster structure of the inner crust of neutron stars in the Hartree-Fock-Bogoliubov approach,” Phys. Rev. C 84, 065801 (2011).
  44. A. Pastore, M. Shelley, S. Baroni,  and C. A. Diget, “A new statistical method for the structure of the inner crust of neutron stars,” Journal of Physics G Nuclear Physics 44, 094003 (2017).
  45. N. Chamel and V. Allard, “Entrainment effects in neutron-proton mixtures within the nuclear Energy-Density Functional Theory: Low-temperature limit,” Phys. Rev. C 100, 065801 (2019).
  46. V. Allard and N. Chamel, ‘‘Entrainment effects in neutron-proton mixtures within the nuclear energy-density functional theory. II. Finite temperatures and arbitrary currents,” Phys. Rev. C 103, 025804 (2021).
  47. “W-SLDA Toolkit,” https://wslda.fizyka.pw.edu.pl/.
  48. A. Bulgac, M. McNeil Forbes, M. M. Kelley, K. J. Roche and G. Wlazłowski, “Quantized superfluid vortex rings in the unitary fermi gas,” Phys. Rev. Lett. 112, 025301 (2014).
  49. M. Tylutki and G. Wlazłowski, “Universal aspects of vortex reconnections across the bcs-bec crossover,” Phys. Rev. A 103, L051302 (2021).
  50. J. Kopyciński, W. R. Pudelko and G. Wlazłowski, “Vortex lattice in spin-imbalanced unitary fermi gas,” Phys. Rev. A 104, 053322 (2021).
  51. G. Wlazłowski, K. Sekizawa, M. Marchwiany and P. Magierski, “Suppressed solitonic cascade in spin-imbalanced superfluid fermi gas,” Phys. Rev. Lett. 120, 253002 (2018).
  52. P. Magierski, B. Tüzemen, Buğra and G. Wlazłowski, “Spin-polarized droplets in the unitary fermi gas,” Phys. Rev. A 100, 033613 (2019).
  53. P. Magierski, B. Tüzemen and G. Wlazłowski, “Dynamics of spin-polarized impurity in ultracold fermi gas,” Phys. Rev. A 104, 033304 (2021).
  54. B. Tüzemen, T. Zawiślak, G. Wlazłowski and P. Magierski, “Disordered structures in ultracold spin-imbalanced fermi gas,” New J. Phys. 25, 033013 (2023).
  55. G. Wlazłowski, K. Xhani, M. Tylutki, N. P. Proukakis and P. Magierski, “Dissipation mechanisms in fermionic josephson junction,” Phys. Rev. Lett. 130, 023003 (2023).
  56. A. Barresi, A. Boulet, G. Wlazłowski and P. Magierski, “Generation and decay of higgs mode in a strongly interacting fermi gas,” Sci. Rep. 13 (2023), 10.1038/s41598-023-38176-9.
  57. K. Hossain, K. Kobuszewski, M. McNeil Forbes, P. Magierski, K. Sekizawa and G. Wlazłowski, “Rotating quantum turbulence in the unitary fermi gas,” Phys. Rev. A 105, 013304 (2022).
  58. G. Wlazłowski, A. Bulgac, M. McNeil Forbes and K. J. Roche, “Life cycle of superfluid vortices and quantum turbulence in the unitary fermi gas,” Phys. Rev. A 91, 031602 (2015).
  59. D. Pęcak, N. Chamel, P. Magierski and G. Wlazłowski, “Properties of a quantum vortex in neutron matter at finite temperatures,” Phys. Rev. C 104, 055801 (2021).
  60. A. Bulgac, P. Magierski, K. J. Roche and I. Stetcu, “Induced fission of pu 240 within a real-time microscopic framework,” Phys. Rev. Lett. 116, 122504 (2016).
  61. P. Magierski, J. Grineviciute and K. Sekizawa, “Pairing Dynamics and Time-Dependent Density Functional Theory,” Acta Phys. Pol. B 49, 281 (2018).
  62. J. Grineviciute, P. Magierski, A. Bulgac, S. Jin and I. Stetcu, “Accuracy of Fission Dynamics Within the Time-Dependent Superfluid Local Density Approximation,” Acta Phys. Pol. B 49, 591 (2018).
  63. J. Shen, T. Tang and L.-L. Wang, Spectral Methods (Springer Berlin Heidelberg, 2011).
  64. A. Bulgac, I. Abdurrahman and G. Wlazłowski, “Sensitivity of Time-Dependent Density Functional Theory to initial conditions,” Phys. Rev. C 105, 044601 (2022).
  65. A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz and H. Lederer, “The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science,” J. Phys. Condens. Matter 26, 213201 (2014).
  66. V. W. Yu, J. Moussa, P. Kůs, A. Marek, P. Messmer, M. Yoon, H. Lederer, Hermann and V. Blum, “GPU-acceleration of the ELPA2 distributed eigensolver for dense symmetric and hermitian eigenproblems,” Comput. Phys. Commun. 262, 107808 (2021).
  67. “ELPA (Eigenvalue soLvers for Petaflop Applications),” https://elpa.mpcdf.mpg.de.
  68. “LUMI supercomputer,” https://www.lumi-supercomputer.eu/.
  69. G. Wlazłowski, M. M. Forbes, S. R. Sarkar, A. Marek and M. Szpindler, “Characterizing the cascade of energy in fermionic quantum turbulence: Pushing the limits of high-performance computing,”  (2023), arXiv:2310.03341 [cond-mat.quant-gas] .
  70. L. D. Landau and S. I. Pekar, “Effective mass of a polaron,” J. Exp. Theor. Phys. 18, 419 (1948).
  71. H. Fröhlich, “Electrons in lattice fields,” Adv. Phys. 3, 325–361 (1954).
  72. A. Rosch, “Quantum-coherent transport of a heavy particle in a fermionic bath,” Adv. Phys. 48, 295–394 (1999).
  73. R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina and E. Demler, “Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress,” Rep. Prog. Phys. 81, 024401 (2018).
  74. P. W. Anderson, “Infrared catastrophe in fermi gases with local scattering potentials,” Phys. Rev. Lett. 18, 1049–1051 (1967a).
  75. P. W. Anderson, “Ground state of a magnetic impurity in a metal,” Phys. Rev. 164, 352–359 (1967b).
  76. R. I. Epstein, “Acoustic properties of neutron stars,” The Astrophysical Journal 333, 880–894 (1988).
  77. A. D. Sedrakian, “Neutron-phonon interaction in neutron stars: Phonon spectrum of Coulomb lattice,” Astrophys. Space Sci. 236, 267–276 (1996).
  78. P. Magierski, “In-medium ion mass renormalization and lattice vibrations in the neutron star crust,” Int. J. Mod. Phys. E 13, 371–374 (2004).
  79. P. Magierski and A. Bulgac, “Nuclear hydrodynamics in the inner crust of neutron stars,” Acta Phys. Pol. B 35, 1203 (2004).
  80. N. Martin and M. Urban, “Superfluid hydrodynamics in the inner crust of neutron stars,” Phys. Rev. C 94, 065801 (2016).
  81. N. Chamel, D. Page and S. Reddy, “Low-energy collective excitations in the neutron star inner crust,” Phys. Rev. C 87, 035803 (2013).
  82. K. Sekizawa, S. Kobayashi and M. Matsuo, “Time-dependent extension of the self-consistent band theory for neutron star matter: Anti-entrainment effects in the slab phase,” Phys. Rev. C 105, 045807 (2022).
  83. K. Yoshimura and K. Sekizawa, “Superfluid extension of the self-consistent time-dependent band theory for neutron star matter: Anti-entrainment vs. superfluid effects in the slab phase,” arXiv preprint arXiv:2306.03327  (2023).
  84. N. N. Shchechilin, N. Chamel and J. M. Pearson, “Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. IV. Role of the symmetry energy in pasta phases,” Phys. Rev. C 108, 025805 (2023).
  85. Daniel Pęcak, Agata Zdanowicz, Nicolas Chamel, Piotr Magierski,  and Gabriel Wlazłowski, “Dataset and supplement for "Time-dependent nuclear energy-density functional theory toolkit for neutron star crust: dynamics of a nucleus in a neutron superfluid",”  (2024).
  86. V. Allard and N. Chamel, “Gapless superfluidity in neutron stars: Thermal properties,” Phys. Rev. C 108, 015801 (2023a).
  87. V. Allard and N. Chamel, “Gapless superfluidity in neutron stars: Normal-fluid fraction,” Phys. Rev. C 108, 045801 (2023b).
  88. H. Dinh Thi, A.-F. Fantina and F. Gulminelli, “The proto-neutron star inner crust in the liquid phase,” A&A 672, A160 (2023).
  89. B. Carter, N. Chamel and P. Haensel, “Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust:. Macroscopic Treatment,” Int. J. Mod. Phys. D 15, 777–803 (2006).
  90. C. Brandon, N. Chamel and P. Haensel, “Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models,” Nucl. Phys. A 748, 675–697 (2005).
  91. N. Chamel, “Band structure effects for dripped neutrons in neutron star crust,” Nucl. Phys. A 747, 109–128 (2005).
  92. N. Chamel, “Crustal Entrainment and Pulsar Glitches,” Phys. Rev. Lett. 110, 011101 (2013).
  93. J. Bardeen, “Critical Fields and Currents in Superconductors,” Rev. Mod. Phys. 34, 667–681 (1962).
  94. G. W. Rayfield and F. Reif, “Quantized vortex rings in superfluid helium,” Phys. Rev. 136, A1194–A1208 (1964).
  95. R. J. Donnelly, “Quantized vortices and turbulence in helium II,” Annu. Rev. Fluid Mech. 25, 325–371 (1993).
  96. W. J. Kwon, G. Moon, S. W. Seo and Y. Shin, “Critical velocity for vortex shedding in a Bose-Einstein condensate,” Phys. Rev. A 91, 053615 (2015).
  97. J. W. Park, B. Ko, Bumsuk and Y. Shin, “Critical vortex shedding in a strongly interacting fermionic superfluid,” Phys. Rev. Lett. 121, 225301 (2018).
  98. T. Winiecki and C. S. Adams, “Motion of an object through a quantum fluid,” Europhys. Lett. (EPL) 52, 257–263 (2000).
  99. T. Frisch, Y. Pomeau and S. Rica, “Transition to dissipation in a model of superflow,” Phys. Rev. Lett. 69, 1644–1647 (1992).
  100. K. Sasaki, N. Suzuki and H. Saito, “Bénard–von Kármán vortex street in a Bose-Einstein condensate,” Phys. Rev. Lett. 104, 150404 (2010).
  101. C. F. Barenghi and R. J. Donnelly, “Vortex rings in classical and quantum systems,” Fluid Dyn. Res. 41, 051401 (2009).
  102. S. Fujiyama, A. Mitani, M. Tsubota, D. I. Bradley, S. N. Fisher, A. M. Guénault, R. P. Haley, G. R. Pickett and V. Tsepelin, “Generation, evolution, and decay of pure quantum turbulence: A full biot-savart simulation,” Phys. Rev. B 81, 180512 (2010).
  103. S. Fujiyama and M. Tsubota, “Drag force on an oscillating object in quantum turbulence,” Phys. Rev. B 79, 094513 (2009).
  104. H. Adachi, S. Fujiyama and M. Tsubota, “Steady-state counterflow quantum turbulence: Simulation of vortex filaments using the full Biot-Savart law,” Phys. Rev. B 81, 104511 (2010).
  105. A. Nakatsuji, M. Tsubota and H. Yano, “Statistics of vortex loops emitted from quantum turbulence driven by an oscillating sphere,” Phys. Rev. B 89, 174520 (2014).
  106. D. Antonopoulou, B. Haskell and C. M. Espinoza, “Pulsar glitches: observations and physical interpretation,” Rep. Prog. Phys. 85, 126901 (2022).
  107. C. Peralta, A. Melatos, M. Giacobello, and A. Ooi, “Transitions between Turbulent and Laminar Superfluid Vorticity States in the Outer Core of a Neutron Star,” Astrophys. J. 651, 1079–1091 (2006).
  108. G. Wlazłowski, K. Sekizawa, P. Magierski, A. Bulgac and M. McNeil Forbes, “Vortex pinning and dynamics in the neutron star crust,” Phys. Rev. Lett. 117, 232701 (2016).
  109. A. Bulgac, M. McNeilForbes and R. Sharma, “Strength of the vortex-pinning interaction from real-time dynamics,” Phys. Rev. Lett. 110, 241102 (2013).
  110. N. Chamel and P. Haensel, “Physics of Neutron Star Crusts,” Living Reviews in Relativity 11, 10 (2008).
  111. V. Graber, N. Andersson and M. Hogg, “Neutron stars in the laboratory,” Int. J. Mod. Phys. D 26, 1730015 (2017).
  112. G. Scamps, S. Goriely, E. Olsen, M. Bender and W. Ryssens, “Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: effect of triaxial shape,” Eur. Phys. J. A 57 (2021), 10.1140/epja/s10050-021-00642-1.
  113. W. Ryssens, G. Scamps, S. Goriely and M. Bender, “Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: II. Time-reversal symmetry breaking,” Eur. Phys. J. A 58 (2022), 10.1140/epja/s10050-022-00894-5.
  114. W. Ryssens, G. Scamps, S. Goriely and M. Bender, “Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: IIb. Fission properties of BSkG2,” Eur. Phys. J. A 59 (2023), 10.1140/epja/s10050-023-01002-x.
  115. G. Grams, W. Ryssens, G. Scamps, S. Goriely and N. Chamel, “Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: III. From atomic nuclei to neutron stars,”  (2023), arXiv:2307.14276 [nucl-th] .
  116. J. S. Levinger, Nuclear Photo-Disintegration (Oxford University Press, Oxford, 1960).
  117. M. N. Harakeh and A. van der Woude, Giant Resonances (Oxford University Press, Oxford, 2001).
  118. G. F. Bertsch, P. F. Bortignon and R. A. Broglia, “Damping of nuclear excitations,” Rev. Mod. Phys. 55, 287–314 (1983).
  119. P. Ring and P. Schuck, The nuclear many-body problem (Springer Science & Business Media, 2004).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 11 likes about this paper.