Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems (2403.17389v3)
Abstract: Simulation-based optimization is a widely used method to solve stochastic optimization problems. This method aims to identify an optimal solution by maximizing the expected value of the objective function. However, due to its computational complexity, the function cannot be accurately evaluated directly, hence it is estimated through simulation. Exploiting the enhanced efficiency of Quantum Amplitude Estimation (QAE) compared to classical Monte Carlo simulation, it frequently outpaces classical simulation-based optimization, resulting in notable performance enhancements in various scenarios. In this work, we make use of a quantum-enhanced algorithm for simulation-based optimization and apply it to solve a variant of the classical Newsvendor problem which is known to be NP-hard. Such problems provide the building block for supply chain management, particularly in inventory management and procurement optimization under risks and uncertainty
- Morton, D.P., Popova, E. (2001). “Monte—Carlo Simulations for Stochastic Optimization“. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_305
- N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme. “Quantum optimization using variational algorithms on near-term quantum devices.” Quantum Science and Technology, vol. 3, no. 3, p. 030503, IOP Publishing, Jun. 2018. http://dx.doi.org/10.1088/2058-9565/aab822
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. “Quantum machine learning.” Nature, vol. 549, no. 7671, Springer Science and Business Media LLC, Sep. 2017, pp. 195–202. http://dx.doi.org/10.1038/nature23474
- P. Rebentrost and S. Lloyd. “Quantum computational finance: quantum algorithm for portfolio optimization.” arXiv preprint, arXiv:1811.03975 [quant-ph], 2018. https://arxiv.org/abs/1811.03975
- P. Rebentrost, B. Gupt, and T. R. Bromley. “Quantum computational finance: Monte Carlo pricing of financial derivatives.” Physical Review A, vol. 98, no. 2, American Physical Society (APS), Aug. 2018. http://dx.doi.org/10.1103/PhysRevA.98.022321).
- G. Brassard, P. Høyer, M. Mosca, and A. Tapp. “Quantum amplitude amplification and estimation.” Quantum Computation and Information, American Mathematical Society, 2002, pp. 53–74. http://dx.doi.org/10.1090/conm/305/05215
- Woerner, S., Egger, D.J. “Quantum risk analysis“ npj Quantum Inf 5, 15 (2019). https://doi.org/10.1038/s41534-019-0130-6
- N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen, and S. Woerner. “Option Pricing using Quantum Computers.” Quantum, vol. 4, Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, Jul. 2020, p. 291. http://dx.doi.org/10.22331/q-2020-07-06-291
- E. Farhi, J. Goldstone, and S. Gutmann. “A Quantum Approximate Optimization Algorithm.” arXiv preprint, arXiv:1411.4028 [quant-ph], 2014. https://arxiv.org/abs/1411.4028
- J. Gacon, C. Zoufal, and S. Woerner. “Quantum-Enhanced Simulation-Based Optimization.” 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, Oct. 2020. http://dx.doi.org/10.1109/QCE49297.2020.00017
- Qiskit contributors. “Qiskit: An Open-source Framework for Quantum Computing.” Zenodo, 2023. https://doi.org/10.5281/zenodo.2573505
- N. Halman, J.B. Orlin, and D. Simchi-Levi. “Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle.” Operations Research, vol. 60, no. 2, pp. 429–446, INFORMS, 2012. http://www.jstor.org/stable/41476367
- C. Zoufal, A. Lucchi, and S. Woerner. “Quantum Generative Adversarial Networks for learning and loading random distributions.” npj Quantum Information, vol. 5, no. 1, Springer Science and Business Media LLC, Nov. 2019. http://dx.doi.org/10.1038/s41534-019-0223-2
- K. J. Arrow, T. Harris, and J. Marschak. “Optimal Inventory Policy.” Econometrica, vol. 19, no. 3, pp. 250–272, [Wiley, Econometric Society], 1951. http://www.jstor.org/stable/1906813
- A. Yu. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem.” arXiv preprint, quant-ph/9511026, 1995. https://arxiv.org/abs/quant-ph/9511026
- Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto. “Amplitude estimation without phase estimation.” Quantum Information Processing, vol. 19, no. 2, Springer Science and Business Media LLC, Jan. 2020. http://dx.doi.org/10.1007/s11128-019-2565-2
- S. Aaronson and P. Rall. “Quantum Approximate Counting, Simplified.” In: Symposium on Simplicity in Algorithms, Society for Industrial and Applied Mathematics, Jan. 2020, pp. 24–32. http://dx.doi.org/10.1137/1.9781611976014.5
- D. Grinko, J. Gacon, C. Zoufal, and S. Woerner. “Iterative quantum amplitude estimation.” npj Quantum Information, vol. 7, no. 1, Springer Science and Business Media LLC, Mar. 2021. http://dx.doi.org/10.1038/s41534-021-00379-1
- K. Nakaji. “Faster amplitude estimation.” Quantum Information and Computation, vol. 20, no. 13 & 14, Rinton Press, Nov. 2020, pp. 1109–1123. http://dx.doi.org/10.26421/QIC20.13-14-2
- L. Grover and T. Rudolph. “Creating superpositions that correspond to efficiently integrable probability distributions.” arXiv preprint, quant-ph/0208112, 2002. https://arxiv.org/abs/quant-ph/0208112
- A. Holmes and A. Y. Matsuura. “Efficient Quantum Circuits for Accurate State Preparation of Smooth, Differentiable Functions.” arXiv preprint, quant-ph/2005.04351, 2020. https://arxiv.org/abs/2005.04351
- A. Carrera Vazquez and S. Woerner. “Efficient State Preparation for Quantum Amplitude Estimation.” Physical Review Applied, vol. 15, no. 3, American Physical Society (APS), Mar. 2021. http://dx.doi.org/10.1103/PhysRevApplied.15.034027
- P. D. Nation and M. Treinish. “Suppressing Quantum Circuit Errors Due to System Variability.” PRX Quantum, vol. 4, no. 1, American Physical Society (APS), Mar. 2023. http://dx.doi.org/10.1103/PRXQuantum.4.010327
- L. Viola and S. Lloyd. “Dynamical suppression of decoherence in two-state quantum systems.” Physical Review A, vol. 58, no. 4, American Physical Society (APS), Oct. 1998, pp. 2733–2744. http://dx.doi.org/10.1103/PhysRevA.58.2733
- P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta. “Scalable Mitigation of Measurement Errors on Quantum Computers.” PRX Quantum, vol. 2, no. 4, American Physical Society (APS), Nov. 2021. http://dx.doi.org/10.1103/PRXQuantum.2.040326
- T. Häner, M. Roetteler, and K. M. Svore. “Optimizing Quantum Circuits for Arithmetic.” arXiv preprint, quant-ph/1805.12445, 2018. https://arxiv.org/abs/1805.12445
- M. Plesch and Č. Brukner. “Quantum-state preparation with universal gate decompositions.” Physical Review A, vol. 83, no. 3, American Physical Society (APS), Mar. 2011, p. 032302. http://dx.doi.org/10.1103/PhysRevA.83.032302
- C. Zoufal, R. V. Mishmash, N. Sharma, N. Kumar, A. Sheshadri, A. Deshmukh, N. Ibrahim, J. Gacon, and S. Woerner. “Variational quantum algorithm for unconstrained black box binary optimization: Application to feature selection.” Quantum, vol. 7, Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, Jan. 2023, p. 909. http://dx.doi.org/10.22331/q-2023-01-26-909
- Youhua (Frank) Chen, Minghui Xu, Zhe George Zhang, (2009) “Technical Note—A Risk-Averse Newsvendor Model Under the CVaR Criterion.“ Operations Research 57(4):1040-1044. https://doi.org/10.1287/opre.1080.0603
- Chase, J., Yang, J., Lau, H.C. (2022). “ Risk-Aware Procurement Optimization in a Global Technology Supply Chain.“ In: de Armas, J., Ramalhinho, H., Voß, S. (eds) Computational Logistics. ICCL 2022. Lecture Notes in Computer Science, vol 13557. Springer, Cham. https://ink.library.smu.edu.sg/sis_research/7757/
- J. Zhang, W. Xie, and S. C. Sarin. “Robust multi-product newsvendor model with uncertain demand and substitution.” European Journal of Operational Research, vol. 293, no. 1, pp. 190-202, 2021. https://www.sciencedirect.com/science/article/pii/S0377221720310511
- N. Cesa-Bianchi, T. Cesari, T. Osogami, M. Scarsini, and S. Wasserkrug. “Online Learning in Supply-Chain Games.” arXiv preprint, cs.GT/2207.04054, 2022. https://arxiv.org/abs/2207.04054
- K. Nakaji, S. Uno, Y. Suzuki, R. Raymond, T. Onodera, T. Tanaka, H. Tezuka, N. Mitsuda, and N. Yamamoto. “Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators.” Physical Review Research, vol. 4, no. 2, American Physical Society (APS), May 2022. http://dx.doi.org/10.1103/PhysRevResearch.4.023136
- K. J. B. Ghosh, K. Yogaraj, G. Agliardi, P. Sabino, M. Fernández-Campoamor, J. Bernabé-Moreno, G. Cortiana, O. Shehab, and C. O’Meara. “Energy risk analysis with Dynamic Amplitude Estimation and Piecewise Approximate Quantum Compiling.” arXiv preprint, quant-ph/2305.09501, 2023. https://arxiv.org/abs/2305.09501
- S. Sim, P. D. Johnson, and A. Aspuru‐Guzik. “Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms.” Advanced Quantum Technologies, vol. 2, no. 12, Wiley, Oct. 2019. http://dx.doi.org/10.1002/qute.201900070
- W. J. Stevenson. Operations Management. McGraw-Hill Irwin, 2009. ISBN: 9780070091771. URL: https://books.google.com.sg/books?id=rXVPPwAACAAJ
- S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. “A new quantum ripple-carry addition circuit.” arXiv preprint, quant-ph/0410184, 2004. https://arxiv.org/abs/quant-ph/0410184
- Yasuhiro Takahashi,”Efficient Quantum Circuits for Arithmetic Operations and their Applications,” The University of Electro communications, 2008.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.