Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems (2403.17389v3)

Published 26 Mar 2024 in quant-ph

Abstract: Simulation-based optimization is a widely used method to solve stochastic optimization problems. This method aims to identify an optimal solution by maximizing the expected value of the objective function. However, due to its computational complexity, the function cannot be accurately evaluated directly, hence it is estimated through simulation. Exploiting the enhanced efficiency of Quantum Amplitude Estimation (QAE) compared to classical Monte Carlo simulation, it frequently outpaces classical simulation-based optimization, resulting in notable performance enhancements in various scenarios. In this work, we make use of a quantum-enhanced algorithm for simulation-based optimization and apply it to solve a variant of the classical Newsvendor problem which is known to be NP-hard. Such problems provide the building block for supply chain management, particularly in inventory management and procurement optimization under risks and uncertainty

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Morton, D.P., Popova, E. (2001). “Monte—Carlo Simulations for Stochastic Optimization“. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_305
  2. N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme. “Quantum optimization using variational algorithms on near-term quantum devices.” Quantum Science and Technology, vol. 3, no. 3, p. 030503, IOP Publishing, Jun. 2018. http://dx.doi.org/10.1088/2058-9565/aab822
  3. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. “Quantum machine learning.” Nature, vol. 549, no. 7671, Springer Science and Business Media LLC, Sep. 2017, pp. 195–202. http://dx.doi.org/10.1038/nature23474
  4. P. Rebentrost and S. Lloyd. “Quantum computational finance: quantum algorithm for portfolio optimization.” arXiv preprint, arXiv:1811.03975 [quant-ph], 2018. https://arxiv.org/abs/1811.03975
  5. P. Rebentrost, B. Gupt, and T. R. Bromley. “Quantum computational finance: Monte Carlo pricing of financial derivatives.” Physical Review A, vol. 98, no. 2, American Physical Society (APS), Aug. 2018. http://dx.doi.org/10.1103/PhysRevA.98.022321).
  6. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. “Quantum amplitude amplification and estimation.” Quantum Computation and Information, American Mathematical Society, 2002, pp. 53–74. http://dx.doi.org/10.1090/conm/305/05215
  7. Woerner, S., Egger, D.J. “Quantum risk analysis“ npj Quantum Inf 5, 15 (2019). https://doi.org/10.1038/s41534-019-0130-6
  8. N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen, and S. Woerner. “Option Pricing using Quantum Computers.” Quantum, vol. 4, Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, Jul. 2020, p. 291. http://dx.doi.org/10.22331/q-2020-07-06-291
  9. E. Farhi, J. Goldstone, and S. Gutmann. “A Quantum Approximate Optimization Algorithm.” arXiv preprint, arXiv:1411.4028 [quant-ph], 2014. https://arxiv.org/abs/1411.4028
  10. J. Gacon, C. Zoufal, and S. Woerner. “Quantum-Enhanced Simulation-Based Optimization.” 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, Oct. 2020. http://dx.doi.org/10.1109/QCE49297.2020.00017
  11. Qiskit contributors. “Qiskit: An Open-source Framework for Quantum Computing.” Zenodo, 2023. https://doi.org/10.5281/zenodo.2573505
  12. N. Halman, J.B. Orlin, and D. Simchi-Levi. “Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle.” Operations Research, vol. 60, no. 2, pp. 429–446, INFORMS, 2012. http://www.jstor.org/stable/41476367
  13. C. Zoufal, A. Lucchi, and S. Woerner. “Quantum Generative Adversarial Networks for learning and loading random distributions.” npj Quantum Information, vol. 5, no. 1, Springer Science and Business Media LLC, Nov. 2019. http://dx.doi.org/10.1038/s41534-019-0223-2
  14. K. J. Arrow, T. Harris, and J. Marschak. “Optimal Inventory Policy.” Econometrica, vol. 19, no. 3, pp. 250–272, [Wiley, Econometric Society], 1951. http://www.jstor.org/stable/1906813
  15. A. Yu. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem.” arXiv preprint, quant-ph/9511026, 1995. https://arxiv.org/abs/quant-ph/9511026
  16. Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto. “Amplitude estimation without phase estimation.” Quantum Information Processing, vol. 19, no. 2, Springer Science and Business Media LLC, Jan. 2020. http://dx.doi.org/10.1007/s11128-019-2565-2
  17. S. Aaronson and P. Rall. “Quantum Approximate Counting, Simplified.” In: Symposium on Simplicity in Algorithms, Society for Industrial and Applied Mathematics, Jan. 2020, pp. 24–32. http://dx.doi.org/10.1137/1.9781611976014.5
  18. D. Grinko, J. Gacon, C. Zoufal, and S. Woerner. “Iterative quantum amplitude estimation.” npj Quantum Information, vol. 7, no. 1, Springer Science and Business Media LLC, Mar. 2021. http://dx.doi.org/10.1038/s41534-021-00379-1
  19. K. Nakaji. “Faster amplitude estimation.” Quantum Information and Computation, vol. 20, no. 13 & 14, Rinton Press, Nov. 2020, pp. 1109–1123. http://dx.doi.org/10.26421/QIC20.13-14-2
  20. L. Grover and T. Rudolph. “Creating superpositions that correspond to efficiently integrable probability distributions.” arXiv preprint, quant-ph/0208112, 2002. https://arxiv.org/abs/quant-ph/0208112
  21. A. Holmes and A. Y. Matsuura. “Efficient Quantum Circuits for Accurate State Preparation of Smooth, Differentiable Functions.” arXiv preprint, quant-ph/2005.04351, 2020. https://arxiv.org/abs/2005.04351
  22. A. Carrera Vazquez and S. Woerner. “Efficient State Preparation for Quantum Amplitude Estimation.” Physical Review Applied, vol. 15, no. 3, American Physical Society (APS), Mar. 2021. http://dx.doi.org/10.1103/PhysRevApplied.15.034027
  23. P. D. Nation and M. Treinish. “Suppressing Quantum Circuit Errors Due to System Variability.” PRX Quantum, vol. 4, no. 1, American Physical Society (APS), Mar. 2023. http://dx.doi.org/10.1103/PRXQuantum.4.010327
  24. L. Viola and S. Lloyd. “Dynamical suppression of decoherence in two-state quantum systems.” Physical Review A, vol. 58, no. 4, American Physical Society (APS), Oct. 1998, pp. 2733–2744. http://dx.doi.org/10.1103/PhysRevA.58.2733
  25. P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta. “Scalable Mitigation of Measurement Errors on Quantum Computers.” PRX Quantum, vol. 2, no. 4, American Physical Society (APS), Nov. 2021. http://dx.doi.org/10.1103/PRXQuantum.2.040326
  26. T. Häner, M. Roetteler, and K. M. Svore. “Optimizing Quantum Circuits for Arithmetic.” arXiv preprint, quant-ph/1805.12445, 2018. https://arxiv.org/abs/1805.12445
  27. M. Plesch and Č. Brukner. “Quantum-state preparation with universal gate decompositions.” Physical Review A, vol. 83, no. 3, American Physical Society (APS), Mar. 2011, p. 032302. http://dx.doi.org/10.1103/PhysRevA.83.032302
  28. C. Zoufal, R. V. Mishmash, N. Sharma, N. Kumar, A. Sheshadri, A. Deshmukh, N. Ibrahim, J. Gacon, and S. Woerner. “Variational quantum algorithm for unconstrained black box binary optimization: Application to feature selection.” Quantum, vol. 7, Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, Jan. 2023, p. 909. http://dx.doi.org/10.22331/q-2023-01-26-909
  29. Youhua (Frank) Chen, Minghui Xu, Zhe George Zhang, (2009) “Technical Note—A Risk-Averse Newsvendor Model Under the CVaR Criterion.“ Operations Research 57(4):1040-1044. https://doi.org/10.1287/opre.1080.0603
  30. Chase, J., Yang, J., Lau, H.C. (2022). “ Risk-Aware Procurement Optimization in a Global Technology Supply Chain.“ In: de Armas, J., Ramalhinho, H., Voß, S. (eds) Computational Logistics. ICCL 2022. Lecture Notes in Computer Science, vol 13557. Springer, Cham. https://ink.library.smu.edu.sg/sis_research/7757/
  31. J. Zhang, W. Xie, and S. C. Sarin. “Robust multi-product newsvendor model with uncertain demand and substitution.” European Journal of Operational Research, vol. 293, no. 1, pp. 190-202, 2021. https://www.sciencedirect.com/science/article/pii/S0377221720310511
  32. N. Cesa-Bianchi, T. Cesari, T. Osogami, M. Scarsini, and S. Wasserkrug. “Online Learning in Supply-Chain Games.” arXiv preprint, cs.GT/2207.04054, 2022. https://arxiv.org/abs/2207.04054
  33. K. Nakaji, S. Uno, Y. Suzuki, R. Raymond, T. Onodera, T. Tanaka, H. Tezuka, N. Mitsuda, and N. Yamamoto. “Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators.” Physical Review Research, vol. 4, no. 2, American Physical Society (APS), May 2022. http://dx.doi.org/10.1103/PhysRevResearch.4.023136
  34. K. J. B. Ghosh, K. Yogaraj, G. Agliardi, P. Sabino, M. Fernández-Campoamor, J. Bernabé-Moreno, G. Cortiana, O. Shehab, and C. O’Meara. “Energy risk analysis with Dynamic Amplitude Estimation and Piecewise Approximate Quantum Compiling.” arXiv preprint, quant-ph/2305.09501, 2023. https://arxiv.org/abs/2305.09501
  35. S. Sim, P. D. Johnson, and A. Aspuru‐Guzik. “Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms.” Advanced Quantum Technologies, vol. 2, no. 12, Wiley, Oct. 2019. http://dx.doi.org/10.1002/qute.201900070
  36. W. J. Stevenson. Operations Management. McGraw-Hill Irwin, 2009. ISBN: 9780070091771. URL: https://books.google.com.sg/books?id=rXVPPwAACAAJ
  37. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. “A new quantum ripple-carry addition circuit.” arXiv preprint, quant-ph/0410184, 2004. https://arxiv.org/abs/quant-ph/0410184
  38. Yasuhiro Takahashi,”Efficient Quantum Circuits for Arithmetic Operations and their Applications,” The University of Electro communications, 2008.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.