2000 character limit reached
A Conjecture on Rainbow Hamiltonian Cycle Decomposition (2403.17290v1)
Published 26 Mar 2024 in math.CO
Abstract: Wu in 1999 conjectured that if $H$ is a subgraph of the complete graph $K_{2n+1}$ with $n$ edges, then there is a Hamiltonian cycle decomposition of $K_{2n+1}$ such that each edge of $H$ is in a separate Hamiltonian cycle. The conjecture was partially settled by Liu and Chen (2023) in cases that $|V(H)|\leq n+1$, $H$ is a linear forest, or $n\leq 5$. In this paper, we settle the conjecture completely. This result can be viewed as a complete graph analogous of Evans conjecture and has some applications in linear arboricity conjecture and restricted size Ramsey numbers.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.