Physics-compliant diagonal representation of beyond-diagonal RIS (2403.17222v2)
Abstract: Physics-compliant models of RIS-parametrized channels assign a load-terminated port to each RIS element. For conventional diagonal RIS (D-RIS), each auxiliary port is terminated by its own independent and individually tunable load (i.e., independent of the other auxiliary ports). For beyond-diagonal RIS (BD-RIS), the auxiliary ports are terminated by a tunable load circuit which couples the auxiliary ports to each other. Here, we point out that a physics-compliant model of the load circuit of a BD-RIS takes the same form as a physics-compliant model of a D-RIS-parametrized radio environment: a multi-port network with a subset of ports terminated by individually tunable loads (independent of each other). Consequently, we recognize that a BD-RIS-parametrized radio environment can be understood as a multi-port cascade network (i.e., the cascade of radio environment with load circuit) terminated by individually tunable loads (independent of each other). Hence, the BD-RIS problem can be mapped into the original D-RIS problem by replacing the radio environment with the cascade of radio environment and load circuit. The insight that BD-RIS can be physics-compliantly analyzed with the conventional D-RIS formalism implies that (i) the same optimization protocols as for D-RIS can be used for the BD-RIS case, and (ii) it is unclear if existing comparisons between BD-RIS and D-RIS are fair because for a fixed number of RIS elements, a BD-RIS has usually more tunable lumped elements.
- J. Tapie, H. Prod’homme, M. F. Imani, and P. del Hougne, “Systematic physics-compliant analysis of over-the-air channel equalization in RIS-parametrized wireless networks-on-chip,” arXiv:2310.16195, 2023, [in press at IEEE J. Sel. Areas Commun.].
- J. Sol, H. Prod’homme, L. Le Magoarou, and P. del Hougne, “Experimentally realized physical-model-based wave control in metasurface-programmable complex media,” arXiv:2308.02349, 2023, [in press at Nat. Commun.].
- P. del Hougne, “Minimal-ambiguity scattering matrix estimation with load-tunable ports,” arXiv:2403.08074, 2024.
- A. Rabault, L. Le Magoarou, J. Sol, G. C. Alexandropoulos, N. Shlezinger, H. V. Poor, and P. del Hougne, “On the tacit linearity assumption in common cascaded models of RIS-parametrized wireless channels,” IEEE Trans. Wirel. Commun., 2024.
- H. Prod’homme and P. del Hougne, “Efficient computation of physics-compliant channel realizations for (rich-scattering) RIS-parametrized radio environments,” IEEE Commun. Lett., 2023.
- J. Sol, L. Le Magoarou, and P. del Hougne, “Optimal blind focusing on perturbation-inducing targets in sub-unitary complex media,” arXiv:2401.15415, 2024.
- S. Shen, B. Clerckx, and R. Murch, “Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis,” IEEE Trans. Wirel. Commun., vol. 21, no. 2, pp. 1229–1243, 2021.
- H. Li, S. Shen, M. Nerini, and B. Clerckx, “Reconfigurable intelligent surfaces 2.0: Beyond diagonal phase shift matrices,” IEEE Commun. Mag., 2023.
- H. Li, S. Shen, M. Nerini, M. Di Renzo, and B. Clerckx, “Beyond diagonal reconfigurable intelligent surfaces with mutual coupling: Modeling and optimization,” IEEE Commun. Lett., 2024.
- D. Frickey, “Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 2, pp. 205–211, 1994.
- R. Marks and D. Williams, “Comments on ”conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances”,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 4, pp. 914–915, 1995.
- T. Reveyrand, “Multiport conversions between S, Z, Y, h, ABCD, and T parameters,” Proc. INMMIC, pp. 1–3, 2018.
- B. Anderson and R. Newcomb, “Cascade connection for time-invariant n-port networks,” in Proc. Inst. Electr. Eng., vol. 113, no. 6.   IET, 1966, pp. 970–974.
- T. S. Chu and T. Itoh, “Generalized scattering matrix method for analysis of cascaded and offset microstrip step discontinuities,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 2, pp. 280–284, 1986.
- P. Overfelt and D. White, “Alternate forms of the generalized composite scattering matrix,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 8, pp. 1267–1268, 1989.
- A. Belenguer, E. D. Caballero, H. Esteban, A. L. Borja, and J. Cascon, “Krylov’s solver based technique for the cascade connection of multiple n-port multimodal scattering matrices,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 720–726, 2012.
- F. de Paulis, S. Scafati, C. Olivieri, and A. Orlandi, “Single-step algorithm for the cascade assembly of multiple s-parameters based multiports networks,” Int. J. RF Microw. Comput.-Aided Eng., vol. 32, no. 4, p. e23070, 2022.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.