Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era

Published 25 Mar 2024 in quant-ph | (2403.17205v1)

Abstract: Quantum computing represents a paradigm shift in computation, offering the potential to solve complex problems intractable for classical computers. Although current quantum processors already consist of a few hundred of qubits, their scalability remains a significant challenge. Modular quantum computing architectures have emerged as a promising approach to scale up quantum computing systems. This paper delves into the critical aspects of distributed multi-core quantum computing, focusing on quantum circuit mapping, a fundamental task to successfully execute quantum algorithms across cores while minimizing inter-core communications. We derive the theoretical bounds on the number of non-local communications needed for random quantum circuits and introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications. Our exhaustive evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9\times$ and $1.6\times$ improvement in terms of execution time and non-local communications, respectively, compared to the best performing algorithm. HQA emerges as a very promising scalable approach for mapping quantum circuits into multi-core architectures, positioning it as a valuable tool for harnessing the potential of quantum computing at scale.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. Matthew Amy and Vlad Gheorghiu. 2020. staq—A full-stack quantum processing toolkit. Quantum Science and Technology 5, 3 (jun 2020), 034016. https://doi.org/10.1088/2058-9565/ab9359
  2. Distributing circuits over heterogeneous, modular quantum computing network architectures. https://doi.org/10.48550/arXiv.2305.14148 arXiv:2305.14148 [quant-ph].
  3. Time-sliced quantum circuit partitioning for modular architectures. In Proceedings of the 17th ACM International Conference on Computing Frontiers (CF ’20). Association for Computing Machinery, New York, NY, USA, 98–107. https://doi.org/10.1145/3387902.3392617
  4. Mapping Quantum Circuits to Modular Architectures with QUBO. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 01. 790–801. https://doi.org/10.1109/QCE57702.2023.00094
  5. Circuit quantum electrodynamics. Rev. Mod. Phys. 93 (May 2021), 025005. Issue 2. https://doi.org/10.1103/RevModPhys.93.025005
  6. The future of quantum computing with superconducting qubits. Journal of Applied Physics 132, 16 (oct 2022). https://doi.org/10.1063/5.0082975
  7. IBM Quantum breaks the 100‑qubit processor barrier. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
  8. Jerry M. Chow. 2021. Quantum Intranet. IET Quantum Communication 2, 1 (apr 2021), 26–27. https://doi.org/10.1049/qtc2.12002
  9. Juan I. Cirac and Peter Zoller. 1995. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74 (May 1995), 4091–4094. Issue 20. https://doi.org/10.1103/PhysRevLett.74.4091
  10. Don Coppersmith. 2002. An approximate Fourier transform useful in quantum factoring. arXiv:quant-ph/0201067 [quant-ph]
  11. Validating quantum computers using randomized model circuits. Phys. Rev. A 100 (Sep 2019), 032328. Issue 3. https://doi.org/10.1103/PhysRevA.100.032328
  12. A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184 [quant-ph]
  13. Optimized Compiler for Distributed Quantum Computing. ACM Transactions on Quantum Computing 4, 2, Article 15 (feb 2023), 29 pages. https://doi.org/10.1145/3579367
  14. Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compilation. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 201–214. https://doi.org/10.1109/MICRO50266.2020.00028
  15. Thomas G. Draper. 2000. Addition on a Quantum Computer. arXiv:quant-ph/0008033 [quant-ph]
  16. Bryan Dury and Olivia Di Matteo. 2020. A QUBO Formulation for Qubit Allocation. arXiv:2009.00140 [quant-ph]
  17. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47 (May 1935), 777–780. Issue 10. https://doi.org/10.1103/PhysRev.47.777
  18. Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on Multi-Core Architectures. IEEE Computer Architecture Letters 22, 2 (July 2023), 161–164. https://doi.org/10.1109/LCA.2023.3318857
  19. Interconnect Fabrics for Multi-Core Quantum Processors: A Context Analysis. In Proceedings of the 16th International Workshop on Network on Chip Architectures (NoCArc ’23). Association for Computing Machinery, New York, NY, USA, 34–39. https://doi.org/10.1145/3610396.3623267
  20. A Modular Quantum Compilation Framework for Distributed Quantum Computing. IEEE Transactions on Quantum Engineering 4 (2023), 1–13. https://doi.org/10.1109/TQE.2023.3303935
  21. Jay Gambetta. 2023. The hardware and software for the era of quantum utility is here. https://research.ibm.com/blog/quantum-roadmap-2033
  22. Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quantum Information 7, 1 (Sept. 2021), 1–10. https://doi.org/10.1038/s41534-021-00484-1
  23. Daniel Gottesman and Isaac L Chuang. 1999. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402 (11 1999), 390–393. https://doi.org/10.1038/46503
  24. Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC ’96). Association for Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866
  25. Peter L. Hammer and Sergiu Rudeanu. 1969. Pseudo-Boolean Programming. Operations Research 17, 2 (1969), 233–261. https://doi.org/10.1287/opre.17.2.233
  26. Quantum Information Processing Using Quantum Dot Spins and Cavity QED. Phys. Rev. Lett. 83 (Nov 1999), 4204–4207. Issue 20. https://doi.org/10.1103/PhysRevLett.83.4204
  27. Quantum Circuit Transformation Based on Subgraph Isomorphism and Tabu Search.
  28. Multicore Quantum Computing. Physical Review Applied 18, 4 (Oct. 2022), 044064. https://doi.org/10.1103/PhysRevApplied.18.044064 Publisher: American Physical Society.
  29. B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49, 2 (1970), 291–307. https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
  30. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79 (Jan 2007), 135–174. Issue 1. https://doi.org/10.1103/RevModPhys.79.135
  31. H. W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 1-2 (1955), 83–97. https://doi.org/10.1002/nav.3800020109
  32. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 7709 (jun 2018), 264–267. https://doi.org/10.1038/s41586-018-0195-y
  33. Timing and Resource-Aware Mapping of Quantum Circuits to Superconducting Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 2 (2022), 359–371. https://doi.org/10.1109/TCAD.2021.3057583
  34. Modeling Short-Range Microwave Networks to Scale Superconducting Quantum Computation. arXiv:2201.08825 [quant-ph]
  35. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 1001–1014. https://doi.org/10.1145/3297858.3304023
  36. Guang Hao Low and Isaac L. Chuang. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (July 2019), 163. https://doi.org/10.22331/q-2019-07-12-163
  37. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 6730 (apr 1999), 786–788. https://doi.org/10.1038/19718
  38. Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC. https://doi.org/10.17226/25196
  39. Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
  40. Mapping quantum algorithms to multi-core quantum computing architectures. In 2023 IEEE International Symposium on Circuits and Systems (ISCAS). 1–5. https://doi.org/10.1109/ISCAS46773.2023.10181589
  41. Taehoon Park and Chae Y. Lee. 1995. Algorithms for partitioning a graph. Computers & Industrial Engineering 28, 4 (1995), 899–909. https://doi.org/10.1016/0360-8352(95)00003-J
  42. Christophe Piveteau and David Sutter. 2023. Circuit knitting with classical communication. arXiv:2205.00016 [quant-ph]
  43. Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum 2 (Jun 2021), 020343. Issue 2. https://doi.org/10.1103/PRXQuantum.2.020343
  44. John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79
  45. Qiskit contributors. 2023. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2573505
  46. On Double Full-Stack Communication-Enabled Architectures for Multicore Quantum Computers. IEEE Micro 41, 5 (2021), 48–56. https://doi.org/10.1109/MM.2021.3092706
  47. Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (1997), 1484–1509. https://doi.org/10.1137/S0097539795293172
  48. t—ket⟩: a retargetable compiler for NISQ devices. Quantum Science and Technology 6, 1 (nov 2020), 014003. https://doi.org/10.1088/2058-9565/ab8e92
  49. Sergei Slussarenko and Geoff J. Pryde. 2019. Photonic quantum information processing: A concise review. Applied Physics Reviews 6, 4 (10 2019), 041303. https://doi.org/10.1063/1.5115814
  50. Scaling Superconducting Quantum Computers with Chiplet Architectures. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE Computer Society, Los Alamitos, CA, USA, 1092–1109. https://doi.org/10.1109/MICRO56248.2022.00078
  51. Optically active quantum dots in monolayer WSe2. Nature Nanotechnology 10 (05 2015), 491–496. https://doi.org/10.1038/nnano.2015.60
  52. CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA, 473–486. https://doi.org/10.1145/3445814.3446758
  53. SupermarQ: A Scalable Quantum Benchmark Suite. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA, 587–603. https://doi.org/10.1109/HPCA53966.2022.00050
  54. AutoComm: A Framework for Enabling Efficient Communication in Distributed Quantum Programs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). 1027–1041. https://doi.org/10.1109/MICRO56248.2022.00074
  55. MECH: Multi-Entry Communication Highway for Superconducting Quantum Chiplets. arXiv:2305.05149 [quant-ph]
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 5 likes about this paper.