Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nonlinear Edelstein Effect in Strongly Correlated Electron Systems (2403.17189v1)

Published 25 Mar 2024 in cond-mat.str-el and cond-mat.mes-hall

Abstract: Nonlinear spintronics, which combines nonlinear dynamics and spintronics, opens a new route for controlling spins and spin dynamics beyond conventional spintronics based on linear responses. Strongly correlated electron systems, which can have large nonlinear responses, are promising candidates for nonlinear spintronics. In this paper, we focus on the nonlinear Edelstein effect (NEE), a generalization of the Edelstein effect, and study the impact of electron correlations on the NEE by performing numerical calculations on a Hubbard model. We find that correlation effects can either enhance or suppress the nonlinear response. We show that the enhancement and suppression of the response are due to the real and imaginary components of the self-energy, respectively. Additionally, we have explored the relationship between the NEE and photomagnetic or optomagnetic effects. Our findings demonstrate that electron correlations can either enhance or suppress the optical spin injection, depending on the light frequency, while always strengthening the inverse Faraday effect.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. I. Žutić, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004).
  2. S. D. Bader and S. S. P. Parkin, Spintronics, Annu. Rev. Condens. Matter Phys. 1, 71 (2010).
  3. A. G. Aronov and Yu. B. Lyanda-Geller, Nuclear electric resonance and orientation of carrier spins by an electric field, JETP Lett. 50, 431 (1989).
  4. V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Commun. 73, 233 (1990).
  5. A. Manchon and S. Zhang, Theory of nonequilibrium intrinsic spin torque in a single nanomagnet, Phys. Rev. B 78, 212405 (2008).
  6. A. Manchon and S. Zhang, Theory of spin torque due to spin-orbit coupling, Phys. Rev. B 79, 094422 (2009).
  7. I. Garate and A. H. MacDonald, Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets, Phys. Rev. B 80, 134403 (2009).
  8. D. Pesin and A. H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater. 11, 409 (2012).
  9. J. H. Cullen, R. B. Atencia, and D. Culcer, Spin transfer torques due to the bulk states of topological insulators, Nanoscale 15, 8437 (2023).
  10. A. Johansson, J. Henk, and I. Mertig, Edelstein effect in Weyl semimetals, Phys. Rev. B 97, 085417 (2018).
  11. K. Limtragool and K. Pasanai, Large enhancement of Edelstein effect in Weyl semimetals from Fermi-arc surface states, Physica E 135, 114983 (2022).
  12. V. M. Edelstein, Magnetoelectric Effect in Polar Superconductors, Phys. Rev. Lett. 75, 2004 (1995).
  13. W.-Y. He and K. T. Law, Magnetoelectric effects in gyrotropic superconductors, Phys. Rev. Res. 2, 012073 (2020).
  14. Y. Ikeda and Y. Yanase, Giant surface Edelstein effect in d𝑑ditalic_d-wave superconductors, Phys. Rev. B 102, 214510 (2020).
  15. N. F. Q. Yuan, Edelstein effect and supercurrent diode effect, arXiv:2311.11087 .
  16. S. Fujimoto, Fermi Liquid Theory for Heavy Fermion Superconductors without Inversion Symmetry: Magnetism and Transport Coefficients, J. Phys. Soc. Jpn. 76, 034712 (2007a).
  17. S. Fujimoto, Electron Correlation and Pairing States in Superconductors without Inversion Symmetry, J. Phys. Soc. Jpn. 76, 051008 (2007b).
  18. Y. Yanase, Magneto-Electric Effect in Three-Dimensional Coupled Zigzag Chains, J. Phys. Soc. Jpn. 83, 014703 (2014).
  19. R. Peters and Y. Yanase, Strong enhancement of the Edelstein effect in f𝑓fitalic_f-electron systems, Phys. Rev. B 97, 115128 (2018).
  20. Y. Michishita and R. Peters, Effects of renormalization and non-Hermiticity on nonlinear responses in strongly correlated electron systems, Phys. Rev. B 103, 195133 (2021).
  21. Y. Murakami, M. Eckstein, and P. Werner, High-Harmonic Generation in Mott Insulators, Phys. Rev. Lett. 121, 057405 (2018).
  22. N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, Ultrafast Modification of Hubbard U in a Strongly Correlated Material: Ab initio High-Harmonic Generation in NiO, Phys. Rev. Lett. 121, 097402 (2018).
  23. A. Kofuji, Y. Michishita, and R. Peters, Effects of strong correlations on the nonlinear response in Weyl-Kondo semimetals, Phys. Rev. B 104, 085151 (2021).
  24. M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Quantum theory of the inverse Faraday effect, Phys. Rev. B 89, 014413 (2014).
  25. F. Freimuth, S. Blügel, and Y. Mokrousov, Laser-induced torques in metallic ferromagnets, Phys. Rev. 94, 144432 (2016).
  26. B. M. Fregoso, Bulk photospin effect: Calculation of electric spin susceptibility to second order in an electric field, Phys. Rev. B 106, 195108 (2022).
  27. R. von Baltz and W. Kraut, Theory of the bulk photovoltaic effect in pure crystals, Phys. Rev. B 23, 5590 (1981).
  28. Z. Dai and A. M. Rappe, Recent Progress in the Theory of Bulk Photovoltaic Effect, Chem. Phys. Rev. 4, 011303 (2023).
  29. P. Curie, J. Phys. Theor. Appl. 3, 393 (1894).
  30. S. M. João and J. Viana Parente Lopes, Basis-independent spectral methods for non-linear optical response in arbitrary tight-binding models, J. Phys. Condens. Matter 32, 125901 (2019).
  31. Y. Wang, Z.-G. Zhu, and G. Su, Quantum theory of nonlinear thermal response, Phys. Rev. B 106, 035148 (2022).
  32. T. Yoda, T. Yokoyama, and S. Murakami, Current-induced Orbital and Spin Magnetizations in Crystals with Helical Structure, Sci. Rep. 5, 12024 (2015).
  33. T. Yoda, T. Yokoyama, and S. Murakami, Orbital Edelstein Effect as a Condensed-Matter Analog of Solenoids, Nano Lett. 18, 916 (2018).
  34. W.-Y. He, D. Goldhaber-Gordon, and K. T. Law, Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene, Nat. Commun. 11, 1650 (2020).
  35. D. Hara, M. S. Bahramy, and S. Murakami, Current-induced orbital magnetization in systems without inversion symmetry, Phys. Rev. B 102, 184404 (2020).
  36. D. Xiao, J. Shi, and Q. Niu, Berry Phase Correction to Electron Density of States in Solids, Phys. Rev. Lett. 95, 137204 (2005).
  37. A. Kirilyuk, A. V. Kimel, and T. Rasing, Ultrafast optical manipulation of magnetic order, Rev. Mod. Phys. 82, 2731 (2010).
  38. A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press, 2010).
  39. J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin, 1964).
  40. C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).
  41. C.-C. Liu, W. Feng, and Y. Yao, Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium, Phys. Rev. Lett. 107, 076802 (2011a).
  42. C.-C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84, 195430 (2011b).
  43. H. Watanabe and Y. Yanase, Chiral photocurrent in Parity-Violating magnet and enhanced response in topological antiferromagnet, Phys. Rev. X 11, 011001 (2021).
  44. R. Peters, T. Pruschke, and F. B. Anders, Numerical renormalization group approach to Green’s functions for quantum impurity models, Phys. Rev. B 74, 245114 (2006).
  45. R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for quantum impurity systems, Rev. Mod. Phys. 80, 395 (2008).
  46. H. Watanabe, A. Daido, and Y. Yanase, Nonreciprocal optical response in parity-breaking superconductors, Phys. Rev. B 105, 024308 (2022).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube