Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Relativistic exponential-type spinor orbitals and their use in many-electron Dirac equation solution (2403.17029v3)

Published 23 Mar 2024 in quant-ph

Abstract: Dirac-Coulomb type differential equation and its solution relativistic exponential-type spinor orbitals are introduced. They provide a revised form for operator invariants, namely Dirac invariants, simplifying the treatment of the angular components in calculation of many-electron systems. The relativistic Coulomb energy is determined by employing a spectral solution to Poisson's equation for the one-electron potential, which is expressed in terms of radial functions involving incomplete gamma functions. The computation for incomplete gamma functions posses challenges due to slow convergence rate associated with their series representation. Such difficulties are eliminated through use of the bi-directional method along with hyper-radial functions. A new formulation for relativistic auxiliary functions that improve the efficiency in Coulomb energy calculations is presented. These formulations also contribute to inquiring into orthogonal expansions for solutions to Poisson's equation using complete orthonormal sets of exponential orbitals with non-integer principal quantum numbers. They may provide a meaningful alternative series representations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Dirac PAM (1928) The quantum theory of the electron. Proc. R. Soc. Lond. Ser. A−--Contain. Pap. Math. Phys. Character 117(778): 610–624. doi: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1928.0023
  2. Dirac PAM (1930) Principles of Quantum Mechanics. Clarendon Press, Oxford.
  3. Grant IP and Quiney HM (2000) Rayleigh−--Ritz approximation of the Dirac operator in atomic and molecular physics. Phys. Rev. A 62(2): 022508. doi: https://link.aps.org/doi/10.1103/PhysRevA.62.022508
  4. Bağcı A and Hoggan PE (2016) Solution of the Dirac equation using the Rayleigh−--Ritz method: Flexible basis coupling large and small components. Results for one-electron systems. Phys. Rev. E 94(1): 013302. doi: https://link.aps.org/doi/10.1103/PhysRevE.94.013302
  5. Bağcı A (2020) Advantages of Slater−--type spinor orbitals in the Dirac–normal-–––Hartree–normal-–––Fock method. Results for hydrogen−--like atoms with super−--critical nuclear charge. Rend. Fis. Acc. Lincei 31(2): 369–385. doi: https://doi.org/10.1007/s12210-020-00899-6
  6. Roothaan, CCJ (1951) New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 23(2): 69–89. doi: https://link.aps.org/doi/10.1103/RevModPhys.23.69
  7. Kim, Yong−--Ki (1967) Relativistic Self−--Consistent−--Field Theory for Closed−--Shell Atoms. Phys. Rev. 154(1): 17–39. doi: https://link.aps.org/doi/10.1103/PhysRev.154.17
  8. Malli G and Oreg J (1975) Relativistic self‐normal-‐‐‐consistent‐normal-‐‐‐field (RSCF) theory for closed‐normal-‐‐‐shell molecules. J. Chem. Phys. 63(2): 830–841. doi: https://doi.org/10.1063/1.431364
  9. Quiney HM, Grant IP and Wilson S (1987) The Dirac equation in the algebraic approximation. V. Self−--consistent field studies including the Breit interaction. J. Phys. B: At. Mol. Phys. 20(7): 1413. doi: https://dx.doi.org/10.1088/0022-3700/20/7/010
  10. Foldy LL and Wouthuysen SA (1950) On the Dirac Theory of Spin 1/2121/21 / 2 Particles and Its Non−--Relativistic Limit. Phys. Rev. 78(1): 29–36. doi: https://link.aps.org/doi/10.1103/PhysRev.78.29
  11. Greiner W (1997) Relativistic Quantum Mechanics: Wave Equations. Springer−--Verlag, Berlin. doi: https://doi.org/10.1007/978-3-662-03425-5
  12. Bağcı A and Hoggan PE (2023) Complete and orthonormal sets of exponential−--type orbitals with non−--integer quantum numbers. J. Phys A: Math. Theor. 56(33): 335205. doi: https://dx.doi.org/10.1088/1751-8121/ace6e2
  13. Manby FR and Knowles PJ (2001) Poisson Equation in the Kohn−--Sham Coulomb Problem. Phys. Rev. Lett. 87(16): 163001. doi: https://link.aps.org/doi/10.1103/PhysRevLett.87.163001
  14. Weatherford CA, Red E and Hoggan PE (2005) Solution of Poisson’s equation using spectral forms. Mol. Phys. 103(15-16): 2169-2172. doi: https://doi.org/10.1080/00268970500137261
  15. Bağcı A and Hoggan PE (2015) Benchmark values for molecular two−--electron integrals arising from the Dirac equation. Phys. Rev. E 91(2): 023303. doi: https://link.aps.org/doi/10.1103/PhysRevE.91.023303
  16. Rose ME (1957) Elementary Theory of Angular Momentum. Dover Publications, New York.
  17. Bağcı A and Aucar GA (2024) A Bi−--directional method for evaluating integrals involving higher transcendental functions. HyperRAF: A Julia package for new hyper−--radial functions. Comput. Phys. Commun. 295: 108990. doi: https://doi.org/10.1016/j.cpc.2023.108990
  18. Bağcı A and Hoggan PE (2018) Analytical evaluation of relativistic molecular integrals. I. Auxiliary functions. Rend. Fis. Acc. Lincei 29(1): 191–197. doi: https://doi.org/10.1007/s12210-018-0669-8
  19. Bağcı A, Hoggan PE and Adak M (2018) Analytical evaluation of relativistic molecular integrals. II: Method of computation for molecular auxiliary functions involved. Rend. Fis. Acc. Lincei 29(4): 765–775. doi: https://doi.org/10.1007/s12210-018-0734-3
  20. Bağcı A and Hoggan PE (2020) Analytical evaluation of relativistic molecular integrals: III. Computation and results for molecular auxiliary functions. Rend. Fis. Acc. Lincei 31(4): 1089–1103. doi: https://doi.org/10.1007/s12210-020-00953-3
  21. Bağcı A JRAF: A Julia package for computation of relativistic molecular auxiliary functions. Comput. Phys. Commun. 273: 108276. doi: https://doi.org/10.1016/j.cpc.2021.108276
  22. Jeszenszki P, Dávid F and Mátyus E (2022) Variational Dirac–Coulomb explicitly correlated computations for atoms and molecules. J. Chem. Phys. 156(8): 084111. doi: https://doi.org/10.1063/5.0075096
  23. Temme NM (1994) Computational Aspects of Incomplete Gamma Functions with Large Complex Parameters. In: Zahar RVM (eds) Approximation and Computation: A Festschrift in Honor of Walter Gautschi. ISNM International Series of Numerical Mathematics. Vol 119. Birkhäuser Boston, Boston MA. doi: https://doi.org/10.1007/978-1-4684-7415-2_37
  24. Gautschi W (1999) A note on the recursive calculation of incomplete gamma functions. ACM Trans. Math. Softw. 25(1): 101–107. doi: https://doi.org/10.1145/305658.305717
  25. Ferreira C, López JL and Sinusía EP (2005) Incomplete gamma functions for large values of their variables. Adv. in Appl. Math. 34(3): 467–485. doi: https://doi.org/10.1016/j.aam.2004.08.001
  26. Amore P (2005) Asymptotic and exact series representations for the incomplete Gamma function. Europhysics Letters 71(1): 1. doi: https://dx.doi.org/10.1209/epl/i2005-10066-6
  27. Gil A, Javier S and Temme NM (2012) Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios. SIAM J. Sci. Comput. 34(6): A2965–A2981. doi: https://doi.org/10.1137/120872553
  28. Bujanda B, López JL and Pagola PJ (2018) Convergent expansions of the incomplete gamma functions in terms of elementary functions. Anal. Appl. 16(3): 435–448. doi: https://doi.org/10.1142/S0219530517500099
  29. Abergel R and Moisan L (2020) Algorithm 1006: Fast and Accurate Evaluation of a Generalized Incomplete Gamma Function. Association for Computing Machinery 46(1): 1–24. doi: https://doi.org/10.1145/3365983
  30. Weniger EJ (2008) On the analyticity of Laguerre series. J. Phys. A: Math. Theor. 41(42): 425207. doi: https://dx.doi.org/10.1088/1751-8113/41/42/425207
  31. Kochubei A and Luchko Y (2019) Volume 1 Basic Theory. In Handbook of Fractional Calculus with Applications. De Gruyter, Berlin. doi: https://doi.org/10.1515/9783110571622
  32. Landau LD and Lifshitz EM (1977) Quantum Mechanics: Non−--Relativistic Theory. 3rd ed. Pergamon, Oxford.
  33. Eremko A, Brizhik L and Loktev V (2023) Algebra of the spinor invariants and the relativistic hydrogen atom. Ann. Phys. 451: 169266. doi: https://doi.org/10.1016/j.aop.2023.169266
  34. Adak M, Dereli T and Ryder LH (2003) Dirac equation in Spacetimes with Non-metricity and Torsions. Int. J. Mod. Phys. D 12(1): 145–155. doi: https://doi.org/10.1142/S0218271803002445
  35. Adak M, Dereli T and Ryder LH (2004) Possible effects of space-time nonmetricity on neutrino oscillations. Phys. Rev. D 69(12): 123002. doi: https://doi.org/10.1103/PhysRevD.69.123002
  36. Pitzer RM (1982) One−--center electron repulsion integrals for slater and Gaussian orbitals. In: Weatherford CA and Jones HW (Eds.) ETO Multicenter Molecular Integrals. Springer, Netherlands. doi: https://doi.org/10.1007/978-94-009-7921-5_11
  37. Slater JC (1930) Note on Hartree’s Method. Phys. Rev. 35(2): 210–211. doi: https://link.aps.org/doi/10.1103/PhysRev.35.210.2
  38. Zener C (1930) Analytic Atomic Wave Functions. Phys. Rev. 36(1): 51–56. doi: https://link.aps.org/doi/10.1103/PhysRev.36.51
  39. Slater JC (1930) Atomic Shielding Constants. Phys. Rev. 36(1): 57–64. doi: https://link.aps.org/doi/10.1103/PhysRev.36.57
  40. Parr RG and Joy HW (1957) Why Not Use Slater Orbitals of Nonintegral Principal Quantum Number?. J. Chem. Phys. 26(2): 424–424. doi: https://doi.org/10.1063/1.1743314
  41. Allouche A (1974) Les orbitales de Slater á nombre quantique ≪n≫much-less-thanabsent𝑛much-greater-thanabsent\ll n\gg≪ italic_n ≫ non−--entier. Theor. Chem. Acta 34(1): 79–83. doi: https://doi.org/10.1007/BF00553235
  42. Pearson JW, Olver S and Porter MA (2017) Numerical methods for the computation of the confluent and Gauss hypergeometric functions. Numer. Algorithms 74(3): 821–866. doi: https://doi.org/10.1007/s11075-016-0173-0
  43. Weniger EJ (2000) Addition theorems as three-dimensional Taylor expansions. Int. J. Quant. Chem. 76(2): 280–295. doi: https://doi.org/10.1002/(SICI)1097-461X(2000)76:2<280::AID-QUA16>3.0.CO;2-C
  44. Fontana PR (1961) Symmetric Expansion of One‐ and Two‐Center Coulomb Potentials. J. Math. Phys. 2(6): 825–828. doi: https://doi.org/10.1063/1.1724228
  45. Roberts PJ (1966) One‐normal-‐‐‐Center Expansion of the Coulomb Potential in Terms of Slater‐Type Orbitals. J. Chem. Phys. 44(8): 3145–3146. doi: https://doi.org/10.1063/1.1727205
  46. Steinborn EO and Filter E (1980) Evaluation of multicenter integrals over Slater-type atomic orbitals by expansion in terms of complete sets. Int. J. Quant. Chem. 18(1): 219–226. doi: https://doi.org/10.1002/qua.560180131
  47. Steinborn EO (1982) On the Evaluation of ETO Molecular Integrals by Series Expansions Using Complete Function Sets. In: Weatherford CA and Jones HW (Eds.) ETO Multicenter Molecular Integrals. Springer, Netherlands. doi: https://doi.org/10.1007/978-94-009-7921-5_3
  48. Arfken G (1985) Mathematical Methods for Physicists. Academic Press, New York.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 2 likes.