Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finitely generated dyadic convex sets (2403.17028v1)

Published 23 Mar 2024 in math.CO

Abstract: Dyadic rationals are rationals whose denominator is a power of $2$. We define dyadic $n$-dimensional convex sets as the intersections with $n$-dimensional dyadic space of an $n$-dimensional real convex set. Such a dyadic convex set is said to be a dyadic $n$-dimensional polytope if the real convex set is a polytope whose vertices lie in the dyadic space. Dyadic convex sets are described as subreducts (subalgebras of reducts) of certain faithful affine spaces over the ring of dyadic numbers, or equivalently as commutative, entropic and idempotent groupoids under the binary operation of arithmetic mean. The paper contains two main results. First, it is proved that, while all dyadic polytopes are finitely generated, only dyadic simplices are generated by their vertices. This answers a question formulated in an earlier paper. Then, a characterization of finitely generated subgroupoids of dyadic convex sets is provided, and it is shown how to use the characterization to determine the minimal number of generators of certain convex subsets of the dyadic plane.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.