2000 character limit reached
Invariant foliations for endomorphims of $\mathbb{P}^2$ with a pluripotentialist product structure (2403.17023v1)
Published 20 Mar 2024 in math.CV
Abstract: Let $f$ be a holomorphic endomorphism of $\mathbb{P}2$, let $T$ be its Green current and $\mu=T\wedge T$ be its equilibrium measure. We prove that if $\mu$ has a local product structure with respect to $T$ then (an iterate of) $f$ preserves a local foliation $\mathcal{F}$ on a neighborhood of $\mathrm{Supp}(T )\backslash\mathcal{E}$,where $\mathcal{E}$ denotes the exceptional set of f . If the local foliation $\mathcal{F}$ extends through $\mathcal{E}$,then it extends to $\mathbb{P}2$ and is an invariant pencil of lines.
- E. Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. Acta Math., 149(1-2):1–40, 1982.
- F. Berteloot and C. Dupont. Une caractérisation des endomorphismes de Lattès par leur mesure de Green. Comment. Math. Helv., 80(2):433–454, 2005.
- Normalization of bundle holomorphic contractions and applications to dynamics. Ann. Inst. Fourier (Grenoble), 58(6):2137–2168, 2008.
- F. Berteloot and J.-J. Loeb. Spherical hypersurfaces and Lattès rational maps. J. Math. Pures Appl. (9), 77(7):655–666, 1998.
- F. Berteloot and J.-J. Loeb. Une caractérisation géométrique des exemples de Lattès de ℙksuperscriptℙ𝑘{\mathbb{P}}^{k}blackboard_P start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Bull. Soc. Math. France, 129(2):175–188, 2001.
- J.-Y. Briend and J. Duval. Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de ℂPkℂsuperscriptP𝑘\mathbb{C}{\rm P}^{k}blackboard_C roman_P start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Acta Math., 182(2):143–157, 1999.
- C. Canales González. Levi-flat hypersurfaces and their complement in complex surfaces. Annales de l’Institut Fourier, 67(6):2423–2462, 2017.
- E. Chirka. Complex Analytic Sets. Mathematics and its Applications. Springer Netherlands, 1989.
- M. Dabija and M. Jonsson. Endomorphisms of the plane preserving a pencil of curves. International Journal of Mathematics, 19:217–221, 2007.
- M. Dabija and M. Jonsson. Algebraic webs invariant under endomorphisms. Publ. Mat., 54(1):137–148, 2010.
- T.-C. Dinh and N. Sibony. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, volume 1998 of Lecture Notes in Math., pages 165–294. Springer, Berlin, 2010.
- R. Dujardin. Fatou directions along the Julia set for endomorphisms of ℂℙkℂsuperscriptℙ𝑘\mathbb{CP}^{k}blackboard_C blackboard_P start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. J. Math. Pures Appl. (9), 98(6):591–615, 2012.
- C. Dupont. Propriétés extrémales et caractéristiques des exemples de Lattès. PhD thesis, 2002. 2002TOU30128.
- C. Dupont and J. Taflin. Dynamics of fibered endomorphisms of ℙksuperscriptℙ𝑘{\mathbb{P}}^{k}blackboard_P start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22(1):53–78, 2021.
- C. Dupont and V. Tapiero. On slice measures of green currents on cp(2), to appear in the proceedings of the simons symposia on algebraic, complex, and arithmetic dynamics, available on arXiv:2310.16425, 2023.
- C. Favre and J. V. Pereira. Foliations invariant by rational maps. Mathematische Zeitschrift, 268:753–770, 2009.
- C. Favre and J. V. Pereira. Webs invariant by rational maps on surfaces. Rend. Circ. Mat. Palermo (2), 64(3):403–431, 2015.
- J. E. Fornæss and N. Sibony. Complex dynamics in higher dimensions. In Complex potential theory (Montreal, PQ, 1993), volume 439 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 131–186. Kluwer Acad. Publ., Dordrecht, 1994. Notes partially written by Estela A. Gavosto.
- D. Huybrechts. Complex Geometry: An Introduction. Universitext (Berlin. Print). Springer, 2005.
- M. Jonsson. Dynamics of polynomial skew products on ℂ2superscriptℂ2\mathbb{C}^{2}blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Math. Ann., 314(3):403–447, 1999.
- A. Lins Neto. A note on projective Levi flats and minimal sets of algebraic foliations. Annales de l’Institut Fourier, 49(4):1369–1385, 1999.
- N. Sibony. Dynamique des applications rationnelles de ℙksuperscriptℙ𝑘\mathbb{P}^{k}blackboard_P start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. In Dynamique et géométrie complexes (Lyon, 1997), volume 8 of Panor. Synthèses, pages ix–x, xi–xii, 97–185. Soc. Math. France, Paris, 1999.
- T. Ueda. Fatou sets in complex dynamics on projective spaces. Journal of the Mathematical Society of Japan, 46(3):545 – 555, 1994.
- L.-S. Young. Dimension, entropy and Lyapunov exponents. Ergodic Theory Dynamical Systems, 2(1):109–124, 1982.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.