Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Optimizing Maximally Entangled State Generation via Pontryagin's Principle (2403.16321v2)

Published 24 Mar 2024 in quant-ph

Abstract: We propose an optimal control strategy to generate maximally entangled states in bipartite quantum systems. Leveraging the Pontryagin Principle, we derive time-dependent control fields that maximize the entanglement measure, specifically concurrence, within minimal time while adhering to input constraints. Our formulation addresses the Liouville-von Neumann dynamics of the reduced density matrix under unitary evolution. The strategy is numerically validated through simulations, demonstrating its ability to drive the system from an initial perturbed separable state to a maximally entangled target state. The results showcase the effectiveness of switching control fields in optimizing entanglement, with potential applications in quantum technologies, including communication, computation, and sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. N. Zou, “Quantum entanglement and its application in quantum communication,” in Journal of Physics: Conference Series, vol. 1827, no. 1.   IOP Publishing, 2021, p. 012120.
  2. A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Physical Review A, vol. 75, no. 4, p. 042310, 2007.
  3. M. Choi and S. Lee, “Quantum cryptographic resource distillation and entanglement,” Scientific Reports, vol. 11, no. 1, p. 21095, 2021.
  4. Y. Liu, S. Kuang, and S. Cong, “Lyapunov-based feedback preparation of ghz entanglement of n𝑛nitalic_n-qubit systems,” IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3827–3839, 2016.
  5. Z.-X. Ding, C.-S. Hu, L.-T. Shen, Z.-B. Yang, H. Wu, and S.-B. Zheng, “Dissipative entanglement preparation via rydberg antiblockade and lyapunov control,” Laser Physics Letters, vol. 16, no. 4, p. 045203, 2019.
  6. K. Mishima and K. Yamashita, “Free-time and fixed end-point optimal control theory in quantum mechanics: Application to entanglement generation,” The Journal of chemical physics, vol. 130, no. 3, 2009.
  7. F. Platzer, F. Mintert, and A. Buchleitner, “Optimal dynamical control of many-body entanglement,” Physical review letters, vol. 105, no. 2, p. 020501, 2010.
  8. P. Poggi and D. A. Wisniacki, “Optimal control of many-body quantum dynamics: Chaos and complexity,” Physical Review A, vol. 94, no. 3, p. 033406, 2016.
  9. D. Stefanatos, “Maximising optomechanical entanglement with optimal control,” Quantum Science and Technology, vol. 2, no. 1, p. 014003, 2017.
  10. F. Albarelli, U. Shackerley-Bennett, and A. Serafini, “Locally optimal control of continuous-variable entanglement,” Physical Review A, vol. 98, no. 6, p. 062312, 2018.
  11. X. Li, “Optimal control of quantum state preparation and entanglement creation in two-qubit quantum system with bounded amplitude,” Scientific Reports, vol. 13, no. 1, p. 14734, 2023.
  12. M. J. Donald, M. Horodecki, and O. Rudolph, “The uniqueness theorem for entanglement measures,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4252–4272, 2002.
  13. V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Physical Review A, vol. 57, no. 3, p. 1619, 1998.
  14. G. Vidal, “Entanglement monotones,” Journal of Modern Optics, vol. 47, no. 2-3, pp. 355–376, 2000.
  15. M. Horodecki, “Entanglement measures.” Quantum Inf. Comput., vol. 1, no. 1, pp. 3–26, 2001.
  16. V. S. Bhaskara and P. K. Panigrahi, “Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using lagrange’s identity and wedge product,” Quantum Information Processing, vol. 16, pp. 1–15, 2017.
  17. S. J. Akhtarshenas, “Concurrence vectors in arbitrary multipartite quantum systems,” Journal of Physics A: Mathematical and General, vol. 38, no. 30, p. 6777, 2005.
  18. M.-J. Zhao, X.-N. Zhu, S.-M. Fei, and X. Li-Jost, “Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states,” Physical Review A, vol. 84, no. 6, p. 062322, 2011.
  19. Y.-C. Ou, H. Fan, and S.-M. Fei, “Proper monogamy inequality for arbitrary pure quantum states,” Physical Review A, vol. 78, no. 1, p. 012311, 2008.
  20. K. Chen, S. Albeverio, and S.-M. Fei, “Concurrence of arbitrary dimensional bipartite quantum states,” Physical review letters, vol. 95, no. 4, p. 040504, 2005.
  21. M. Horodecki, P. Horodecki, and R. Horodecki, “Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?” Physical Review Letters, vol. 80, no. 24, p. 5239, 1998.
  22. K. Graichen, A. Kugi, N. Petit, and F. Chaplais, “Handling constraints in optimal control with saturation functions and system extension,” Systems & Control Letters, vol. 59, no. 11, pp. 671–679, 2010.
  23. N. B. Dehaghani, A. P. Aguiar, and R. Wisniewski, “Quantum pontryagin neural networks in gamkrelidze form subjected to the purity of quantum channels,” IEEE Control Systems Letters, 2023.
  24. A. D’ambrosio, E. Schiassi, F. Curti, and R. Furfaro, “Pontryagin neural networks with functional interpolation for optimal intercept problems,” Mathematics, vol. 9, no. 9, p. 996, 2021.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube