Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

de Sitter at all loops: the story of the Schwinger model (2403.16166v5)

Published 24 Mar 2024 in hep-th

Abstract: We consider the two-dimensional Schwinger model of a massless charged fermion coupled to an Abelian gauge field on a fixed de Sitter background. The theory admits an exact solution, first examined by Jayewardena, and can be analyzed efficiently using Euclidean methods. We calculate fully non-perturbative, gauge-invariant correlation functions of the electric field as well as the fermion and analyze these correlators in the late-time limit. We compare these results with the perturbative picture, for example by verifying that the one-loop contribution to the fermion two-point function, as predicted from the exact solution, matches the direct computation of the one-loop Feynman diagram. We demonstrate many features endemic of quantum field theory in de Sitter space, including the appearance of late-time logarithms, their resummation to de Sitter invariant expressions, and Boltzmann suppressed non-perturbative phenomena, with surprising late-time features.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. J. S. Schwinger, “Gauge Invariance and Mass. 2.,” Phys. Rev. 128 (1962) 2425–2429.
  2. J. H. Lowenstein and J. A. Swieca, “Quantum electrodynamics in two-dimensions,” Annals Phys. 68 (1971) 172–195.
  3. R. Jackiw and R. Rajaraman, “Vector Meson Mass Generation Through Chiral Anomalies,” Phys. Rev. Lett. 54 (1985) 1219. [Erratum: Phys.Rev.Lett. 54, 2060 (1985)].
  4. S. R. Coleman, R. Jackiw, and L. Susskind, “Charge Shielding and Quark Confinement in the Massive Schwinger Model,” Annals Phys. 93 (1975) 267.
  5. S. R. Coleman, “More About the Massive Schwinger Model,” Annals Phys. 101 (1976) 239.
  6. R. Roskies and F. Schaposnik, “Comment on Fujikawa’s Analysis Applied to the Schwinger Model,” Phys. Rev. D 23 (1981) 558–560.
  7. T. Oki, Y. Osada, and Y. Tanikawa, “Thermodynamics of the Schwinger model in a two-dimensional de Sitter space-time,” Bull. Okayama Univ. Sci. A20 (1984) 97–108.
  8. J. Barcelos-Neto and A. K. Das, “Chiral Schwinger Model in Curved Space-time,” Z. Phys. C 32 (1986) 527.
  9. C. Jayewardena, “Schwinger Model on S(2),” Helv. Phys. Acta 61 (1988) 636–711.
  10. F. Ferrari, “Field theories on the Poincare disk,” Int. J. Mod. Phys. A 11 (1996) 5389–5404, arXiv:hep-th/9502104.
  11. A. Bzowski, P. McFadden, and K. Skenderis, “Implications of conformal invariance in momentum space,” JHEP 03 (2014) 111, arXiv:1304.7760 [hep-th].
  12. D. Anninos, T. Anous, D. Z. Freedman, and G. Konstantinidis, “Late-time Structure of the Bunch-Davies De Sitter Wavefunction,” JCAP 11 (2015) 048, arXiv:1406.5490 [hep-th].
  13. D. Baumann, D. Green, A. Joyce, E. Pajer, G. L. Pimentel, C. Sleight, and M. Taronna, “Snowmass White Paper: The Cosmological Bootstrap,” in Snowmass 2021. 3, 2022. arXiv:2203.08121 [hep-th].
  14. V. Gorbenko and L. Senatore, “λ⁢ϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT in dS,” arXiv:1911.00022 [hep-th].
  15. L. Di Pietro, V. Gorbenko, and S. Komatsu, “Analyticity and unitarity for cosmological correlators,” JHEP 03 (2022) 023, arXiv:2108.01695 [hep-th].
  16. P. Benincasa, “Amplitudes meet Cosmology: A (Scalar) Primer,” arXiv:2203.15330 [hep-th].
  17. K. Fujikawa, “Path Integral Measure for Gauge Invariant Fermion Theories,” Phys. Rev. Lett. 42 (1979) 1195–1198.
  18. D. Anninos, T. Anous, B. Pethybridge, and G. Şengör, “The Discreet Charm of the Discrete Series in DS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” arXiv:2307.15832 [hep-th].
  19. S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, Cambridge, U.K., 1985.
  20. C. Adam, “Instantons and vacuum expectation values in the Schwinger model,” Z. Phys. C 63 (1994) 169–180.
  21. C. Adam, “The Dyson-Schwinger equations in the instanton vacuum of the Schwinger model,” Czech. J. Phys. 46 (1996) 893–904, arXiv:hep-ph/9501273.
  22. C. Adam, Anomaly and Topological aspects of two-dimensional quantum electrodynamics. Phd thesis, Universität Wien, October, 1993.
  23. S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Conformal QEDd𝑑{}_{d}start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT, F𝐹Fitalic_F-Theorem and the ϵitalic-ϵ\epsilonitalic_ϵ Expansion,” J. Phys. A 49 no. 13, (2016) 135403, arXiv:1508.06354 [hep-th].
  24. A. Higuchi, “Symmetric tensor fields in de Sitter spacetime,” YTP-85-22, Yale preprint (November, 1985)  .
  25. A. Higuchi, “Symmetric Tensor Spherical Harmonics on the N𝑁Nitalic_N Sphere and Their Application to the De Sitter Group SO(N𝑁Nitalic_N,1),” J. Math. Phys. 28 (1987) 1553. [Erratum: J.Math.Phys. 43, 6385 (2002)].
  26. Springer-Verlag, 1977.
  27. T. Huber and D. Maitre, “HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters,” Comput. Phys. Commun. 175 (2006) 122–144, arXiv:hep-ph/0507094.
  28. T. Huber and D. Maitre, “HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters,” Comput. Phys. Commun. 178 (2008) 755–776, arXiv:0708.2443 [hep-ph].
  29. L. H. Ford, “Quantum Instability of De Sitter Space-time,” Phys. Rev. D 31 (1985) 710.
  30. I. Antoniadis, J. Iliopoulos, and T. N. Tomaras, “Quantum Instability of De Sitter Space,” Phys. Rev. Lett. 56 (1986) 1319.
  31. N. C. Tsamis and R. P. Woodard, “Quantum gravity slows inflation,” Nucl. Phys. B 474 (1996) 235–248, arXiv:hep-ph/9602315.
  32. A. M. Polyakov, “De Sitter space and eternity,” Nucl. Phys. B 797 (2008) 199–217, arXiv:0709.2899 [hep-th].
  33. F. Gautier and J. Serreau, “Infrared dynamics in de Sitter space from Schwinger-Dyson equations,” Phys. Lett. B 727 (2013) 541–547, arXiv:1305.5705 [hep-th].
  34. D. López Nacir, F. D. Mazzitelli, and L. G. Trombetta, “O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) model in Euclidean de Sitter space: beyond the leading infrared approximation,” JHEP 09 (2016) 117, arXiv:1606.03481 [hep-th].
  35. S. Chapman, D. A. Galante, E. Harris, S. U. Sheorey, and D. Vegh, “Complex geodesics in de Sitter space,” JHEP 03 (2023) 006, arXiv:2212.01398 [hep-th].
  36. L. Aalsma, M. M. Faruk, J. P. van der Schaar, M. R. Visser, and J. de Witte, “Late-time correlators and complex geodesics in de Sitter space,” SciPost Phys. 15 no. 1, (2023) 031, arXiv:2212.01394 [hep-th].
  37. J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, and O. Janssen, “Real no-boundary wave function in Lorentzian quantum cosmology,” Phys. Rev. D 96 no. 4, (2017) 043505, arXiv:1705.05340 [gr-qc].
  38. I. Sachs and A. Wipf, “Finite temperature Schwinger model,” Helv. Phys. Acta 65 (1992) 652–678, arXiv:1005.1822 [hep-th].
  39. R. Figari, R. Hoegh-Krohn, and C. R. Nappi, “Interacting Relativistic Boson Fields in the de Sitter Universe with Two Space-Time Dimensions,” Commun. Math. Phys. 44 (1975) 265–278.
  40. G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15 (1977) 2738–2751.
  41. C. Adam, R. A. Bertlmann, and P. Hofer, “Overview on the anomaly and Schwinger term in two-dimensional QED,” Riv. Nuovo Cim. 16N8 (1993) 1–52.
  42. C. Adam, “Perturbative solution of the Schwinger model,” Czech. J. Phys. 48 (1998) 9–19, arXiv:hep-ph/9601228.
  43. D. Marolf and I. A. Morrison, “The IR stability of de Sitter: Loop corrections to scalar propagators,” Phys. Rev. D 82 (2010) 105032, arXiv:1006.0035 [gr-qc].
  44. B. Mühlmann, “The two-sphere partition function from timelike Liouville theory at three-loop order,” JHEP 05 (2022) 057, arXiv:2202.04549 [hep-th].
  45. L. Di Pietro, V. Gorbenko, and S. Komatsu, “Cosmological Correlators at Finite Coupling,” arXiv:2312.17195 [hep-th].
  46. N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Differential Equations for Cosmological Correlators,” arXiv:2312.05303 [hep-th].
  47. P. Chakraborty and J. Stout, “Light Scalars at the Cosmological Collider,” arXiv:2310.01494 [hep-th].
  48. Z. Qin and Z.-Z. Xianyu, “Inflation correlators at the one-loop order: nonanalyticity, factorization, cutting rule, and OPE,” JHEP 09 (2023) 116, arXiv:2304.13295 [hep-th].
  49. S. L. Cacciatori, H. Epstein, and U. Moschella, “Loops in de Sitter space,” arXiv:2403.13145 [hep-th].
  50. T. Heckelbacher and I. Sachs, “Loops in dS/CFT,” JHEP 02 (2021) 151, arXiv:2009.06511 [hep-th].
  51. T. Heckelbacher, I. Sachs, E. Skvortsov, and P. Vanhove, “Analytical evaluation of cosmological correlation functions,” JHEP 08 (2022) 139, arXiv:2204.07217 [hep-th].
  52. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05 (2020) 013, arXiv:1911.12333 [hep-th].
  53. E. J. Martinec and W. E. Moore, “Modeling Quantum Gravity Effects in Inflation,” JHEP 07 (2014) 053, arXiv:1401.7681 [hep-th].
  54. D. Anninos, T. Bautista, and B. Mühlmann, “The two-sphere partition function in two-dimensional quantum gravity,” JHEP 09 (2021) 116, arXiv:2106.01665 [hep-th].
  55. D. Anninos, F. Denef, R. Monten, and Z. Sun, “Higher Spin de Sitter Hilbert Space,” JHEP 10 (2019) 071, arXiv:1711.10037 [hep-th].
  56. E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba, and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition,” JHEP 07 (2022) 140, arXiv:2110.14670 [hep-th].
  57. G. Batra, G. B. De Luca, E. Silverstein, G. Torroba, and S. Yang, “Bulk-local dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT holography: the Matter with T⁢T¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” arXiv:2403.01040 [hep-th].
  58. D. Anninos and D. M. Hofman, “Infrared Realization of dS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Class. Quant. Grav. 35 no. 8, (2018) 085003, arXiv:1703.04622 [hep-th].
  59. J. Maldacena, G. J. Turiaci, and Z. Yang, “Two dimensional Nearly de Sitter gravity,” JHEP 01 (2021) 139, arXiv:1904.01911 [hep-th].
  60. J. Cotler and K. Jensen, “Non-perturbative de Sitter Jackiw-Teitelboim gravity,” arXiv:2401.01925 [hep-th].
  61. T. Anous and J. Skulte, “An invitation to the principal series,” SciPost Phys. 9 no. 3, (2020) 028, arXiv:2007.04975 [hep-th].
  62. B. J. Pethybridge, “Notes on complex q=2𝑞2q=2italic_q = 2 SYK,” arXiv:2403.04673 [hep-th].
  63. D. Anninos and D. A. Galante, “Constructing AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT flow geometries,” JHEP 02 (2021) 045, arXiv:2011.01944 [hep-th].
  64. V. Narovlansky and H. Verlinde, “Double-scaled SYK and de Sitter Holography,” arXiv:2310.16994 [hep-th].
  65. L. Susskind, “De Sitter Space, Double-Scaled SYK, and the Separation of Scales in the Semiclassical Limit,” arXiv:2209.09999 [hep-th].
  66. V. A. Letsios, “The eigenmodes for spinor quantum field theory in global de Sitter space–time,” J. Math. Phys. 62 no. 3, (2021) 032303, arXiv:2011.07875 [gr-qc].
  67. V. A. Letsios, “The (partially) massless spin-3/2 and spin-5/2 fields in de Sitter spacetime as unitary and non-unitary representations of the de Sitter algebra,” arXiv:2206.09851 [hep-th].
  68. V. A. Letsios, “New conformal-like symmetry of strictly massless fermions in four-dimensional de Sitter space,” arXiv:2310.01702 [hep-th].
  69. V. A. Letsios, “(Non-)unitarity of strictly and partially massless fermions on de Sitter space II: an explanation based on the group-theoretic properties of the spin-3/2 and spin-5/2 eigenmodes,” J. Phys. A 57 no. 13, (2024) 135401.
  70. B. Pethybridge and V. Schaub, “Tensors and spinors in de Sitter space,” JHEP 06 (2022) 123, arXiv:2111.14899 [hep-th].
  71. V. Schaub, “Spinors in (Anti-)de Sitter Space,” JHEP 09 (2023) 142, arXiv:2302.08535 [hep-th].
  72. D. Anninos, P. Benetti Genolini, and B. Mühlmann, “dS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT supergravity,” JHEP 11 (2023) 145, arXiv:2309.02480 [hep-th].
  73. A. Strominger, “The dS / CFT correspondence,” JHEP 10 (2001) 034, arXiv:hep-th/0106113.
  74. J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 05 (2003) 013, arXiv:astro-ph/0210603.
  75. D. Anninos, R. Mahajan, D. Radičević, and E. Shaghoulian, “Chern-Simons-Ghost Theories and de Sitter Space,” JHEP 01 (2015) 074, arXiv:1405.1424 [hep-th].
  76. N. Arkani-Hamed, P. Benincasa, and A. Postnikov, “Cosmological Polytopes and the Wavefunction of the Universe,” arXiv:1709.02813 [hep-th].
  77. N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities,” JHEP 04 (2020) 105, arXiv:1811.00024 [hep-th].
  78. S. Jazayeri, E. Pajer, and D. Stefanyszyn, “From locality and unitarity to cosmological correlators,” JHEP 10 (2021) 065, arXiv:2103.08649 [hep-th].
  79. C. Sleight and M. Taronna, “From AdS to dS exchanges: Spectral representation, Mellin amplitudes, and crossing,” Phys. Rev. D 104 no. 8, (2021) L081902, arXiv:2007.09993 [hep-th].
  80. M. Hogervorst, J. a. Penedones, and K. S. Vaziri, “Towards the non-perturbative cosmological bootstrap,” JHEP 02 (2023) 162, arXiv:2107.13871 [hep-th].
  81. D. Anninos and F. Denef, “Cosmic Clustering,” JHEP 06 (2016) 181, arXiv:1111.6061 [hep-th].
  82. Cambridge Univ. Press, Cambridge, UK, 5, 2012.
  83. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11, 2012.
  84. R. Camporesi and A. Higuchi, “On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces,” J. Geom. Phys. 20 (1996) 1–18, arXiv:gr-qc/9505009.
  85. D. Vassilevich, “Heat kernel expansion: user’s manual,” Physics Reports 388 no. 5, (2003) 279–360. https://www.sciencedirect.com/science/article/pii/S0370157303003545.
  86. F. Denef, S. A. Hartnoll, and S. Sachdev, “Black hole determinants and quasinormal modes,” Class. Quant. Grav. 27 (2010) 125001, arXiv:0908.2657 [hep-th].
  87. D. Anninos, F. Denef, Y. T. A. Law, and Z. Sun, “Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions,” JHEP 01 (2022) 088, arXiv:2009.12464 [hep-th].
  88. E. Witten, “Fermion Path Integrals And Topological Phases,” Rev. Mod. Phys. 88 no. 3, (2016) 035001, arXiv:1508.04715 [cond-mat.mes-hall].
  89. I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi, “Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors,” JHEP 05 (2012) 036, arXiv:1112.5342 [hep-th].
  90. E. Witten, “On S duality in Abelian gauge theory,” Selecta Math. 1 (1995) 383, arXiv:hep-th/9505186.
  91. Y. T. A. Law, “A compendium of sphere path integrals,” JHEP 12 (2021) 213, arXiv:2012.06345 [hep-th].
  92. V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780 [hep-th].
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: