de Sitter at all loops: the story of the Schwinger model (2403.16166v5)
Abstract: We consider the two-dimensional Schwinger model of a massless charged fermion coupled to an Abelian gauge field on a fixed de Sitter background. The theory admits an exact solution, first examined by Jayewardena, and can be analyzed efficiently using Euclidean methods. We calculate fully non-perturbative, gauge-invariant correlation functions of the electric field as well as the fermion and analyze these correlators in the late-time limit. We compare these results with the perturbative picture, for example by verifying that the one-loop contribution to the fermion two-point function, as predicted from the exact solution, matches the direct computation of the one-loop Feynman diagram. We demonstrate many features endemic of quantum field theory in de Sitter space, including the appearance of late-time logarithms, their resummation to de Sitter invariant expressions, and Boltzmann suppressed non-perturbative phenomena, with surprising late-time features.
- J. S. Schwinger, “Gauge Invariance and Mass. 2.,” Phys. Rev. 128 (1962) 2425–2429.
- J. H. Lowenstein and J. A. Swieca, “Quantum electrodynamics in two-dimensions,” Annals Phys. 68 (1971) 172–195.
- R. Jackiw and R. Rajaraman, “Vector Meson Mass Generation Through Chiral Anomalies,” Phys. Rev. Lett. 54 (1985) 1219. [Erratum: Phys.Rev.Lett. 54, 2060 (1985)].
- S. R. Coleman, R. Jackiw, and L. Susskind, “Charge Shielding and Quark Confinement in the Massive Schwinger Model,” Annals Phys. 93 (1975) 267.
- S. R. Coleman, “More About the Massive Schwinger Model,” Annals Phys. 101 (1976) 239.
- R. Roskies and F. Schaposnik, “Comment on Fujikawa’s Analysis Applied to the Schwinger Model,” Phys. Rev. D 23 (1981) 558–560.
- T. Oki, Y. Osada, and Y. Tanikawa, “Thermodynamics of the Schwinger model in a two-dimensional de Sitter space-time,” Bull. Okayama Univ. Sci. A20 (1984) 97–108.
- J. Barcelos-Neto and A. K. Das, “Chiral Schwinger Model in Curved Space-time,” Z. Phys. C 32 (1986) 527.
- C. Jayewardena, “Schwinger Model on S(2),” Helv. Phys. Acta 61 (1988) 636–711.
- F. Ferrari, “Field theories on the Poincare disk,” Int. J. Mod. Phys. A 11 (1996) 5389–5404, arXiv:hep-th/9502104.
- A. Bzowski, P. McFadden, and K. Skenderis, “Implications of conformal invariance in momentum space,” JHEP 03 (2014) 111, arXiv:1304.7760 [hep-th].
- D. Anninos, T. Anous, D. Z. Freedman, and G. Konstantinidis, “Late-time Structure of the Bunch-Davies De Sitter Wavefunction,” JCAP 11 (2015) 048, arXiv:1406.5490 [hep-th].
- D. Baumann, D. Green, A. Joyce, E. Pajer, G. L. Pimentel, C. Sleight, and M. Taronna, “Snowmass White Paper: The Cosmological Bootstrap,” in Snowmass 2021. 3, 2022. arXiv:2203.08121 [hep-th].
- V. Gorbenko and L. Senatore, “λϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT in dS,” arXiv:1911.00022 [hep-th].
- L. Di Pietro, V. Gorbenko, and S. Komatsu, “Analyticity and unitarity for cosmological correlators,” JHEP 03 (2022) 023, arXiv:2108.01695 [hep-th].
- P. Benincasa, “Amplitudes meet Cosmology: A (Scalar) Primer,” arXiv:2203.15330 [hep-th].
- K. Fujikawa, “Path Integral Measure for Gauge Invariant Fermion Theories,” Phys. Rev. Lett. 42 (1979) 1195–1198.
- D. Anninos, T. Anous, B. Pethybridge, and G. Şengör, “The Discreet Charm of the Discrete Series in DS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” arXiv:2307.15832 [hep-th].
- S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, Cambridge, U.K., 1985.
- C. Adam, “Instantons and vacuum expectation values in the Schwinger model,” Z. Phys. C 63 (1994) 169–180.
- C. Adam, “The Dyson-Schwinger equations in the instanton vacuum of the Schwinger model,” Czech. J. Phys. 46 (1996) 893–904, arXiv:hep-ph/9501273.
- C. Adam, Anomaly and Topological aspects of two-dimensional quantum electrodynamics. Phd thesis, Universität Wien, October, 1993.
- S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Conformal QEDd𝑑{}_{d}start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT, F𝐹Fitalic_F-Theorem and the ϵitalic-ϵ\epsilonitalic_ϵ Expansion,” J. Phys. A 49 no. 13, (2016) 135403, arXiv:1508.06354 [hep-th].
- A. Higuchi, “Symmetric tensor fields in de Sitter spacetime,” YTP-85-22, Yale preprint (November, 1985) .
- A. Higuchi, “Symmetric Tensor Spherical Harmonics on the N𝑁Nitalic_N Sphere and Their Application to the De Sitter Group SO(N𝑁Nitalic_N,1),” J. Math. Phys. 28 (1987) 1553. [Erratum: J.Math.Phys. 43, 6385 (2002)].
- Springer-Verlag, 1977.
- T. Huber and D. Maitre, “HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters,” Comput. Phys. Commun. 175 (2006) 122–144, arXiv:hep-ph/0507094.
- T. Huber and D. Maitre, “HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters,” Comput. Phys. Commun. 178 (2008) 755–776, arXiv:0708.2443 [hep-ph].
- L. H. Ford, “Quantum Instability of De Sitter Space-time,” Phys. Rev. D 31 (1985) 710.
- I. Antoniadis, J. Iliopoulos, and T. N. Tomaras, “Quantum Instability of De Sitter Space,” Phys. Rev. Lett. 56 (1986) 1319.
- N. C. Tsamis and R. P. Woodard, “Quantum gravity slows inflation,” Nucl. Phys. B 474 (1996) 235–248, arXiv:hep-ph/9602315.
- A. M. Polyakov, “De Sitter space and eternity,” Nucl. Phys. B 797 (2008) 199–217, arXiv:0709.2899 [hep-th].
- F. Gautier and J. Serreau, “Infrared dynamics in de Sitter space from Schwinger-Dyson equations,” Phys. Lett. B 727 (2013) 541–547, arXiv:1305.5705 [hep-th].
- D. López Nacir, F. D. Mazzitelli, and L. G. Trombetta, “O(N)𝑂𝑁O(N)italic_O ( italic_N ) model in Euclidean de Sitter space: beyond the leading infrared approximation,” JHEP 09 (2016) 117, arXiv:1606.03481 [hep-th].
- S. Chapman, D. A. Galante, E. Harris, S. U. Sheorey, and D. Vegh, “Complex geodesics in de Sitter space,” JHEP 03 (2023) 006, arXiv:2212.01398 [hep-th].
- L. Aalsma, M. M. Faruk, J. P. van der Schaar, M. R. Visser, and J. de Witte, “Late-time correlators and complex geodesics in de Sitter space,” SciPost Phys. 15 no. 1, (2023) 031, arXiv:2212.01394 [hep-th].
- J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, and O. Janssen, “Real no-boundary wave function in Lorentzian quantum cosmology,” Phys. Rev. D 96 no. 4, (2017) 043505, arXiv:1705.05340 [gr-qc].
- I. Sachs and A. Wipf, “Finite temperature Schwinger model,” Helv. Phys. Acta 65 (1992) 652–678, arXiv:1005.1822 [hep-th].
- R. Figari, R. Hoegh-Krohn, and C. R. Nappi, “Interacting Relativistic Boson Fields in the de Sitter Universe with Two Space-Time Dimensions,” Commun. Math. Phys. 44 (1975) 265–278.
- G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15 (1977) 2738–2751.
- C. Adam, R. A. Bertlmann, and P. Hofer, “Overview on the anomaly and Schwinger term in two-dimensional QED,” Riv. Nuovo Cim. 16N8 (1993) 1–52.
- C. Adam, “Perturbative solution of the Schwinger model,” Czech. J. Phys. 48 (1998) 9–19, arXiv:hep-ph/9601228.
- D. Marolf and I. A. Morrison, “The IR stability of de Sitter: Loop corrections to scalar propagators,” Phys. Rev. D 82 (2010) 105032, arXiv:1006.0035 [gr-qc].
- B. Mühlmann, “The two-sphere partition function from timelike Liouville theory at three-loop order,” JHEP 05 (2022) 057, arXiv:2202.04549 [hep-th].
- L. Di Pietro, V. Gorbenko, and S. Komatsu, “Cosmological Correlators at Finite Coupling,” arXiv:2312.17195 [hep-th].
- N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee, and G. L. Pimentel, “Differential Equations for Cosmological Correlators,” arXiv:2312.05303 [hep-th].
- P. Chakraborty and J. Stout, “Light Scalars at the Cosmological Collider,” arXiv:2310.01494 [hep-th].
- Z. Qin and Z.-Z. Xianyu, “Inflation correlators at the one-loop order: nonanalyticity, factorization, cutting rule, and OPE,” JHEP 09 (2023) 116, arXiv:2304.13295 [hep-th].
- S. L. Cacciatori, H. Epstein, and U. Moschella, “Loops in de Sitter space,” arXiv:2403.13145 [hep-th].
- T. Heckelbacher and I. Sachs, “Loops in dS/CFT,” JHEP 02 (2021) 151, arXiv:2009.06511 [hep-th].
- T. Heckelbacher, I. Sachs, E. Skvortsov, and P. Vanhove, “Analytical evaluation of cosmological correlation functions,” JHEP 08 (2022) 139, arXiv:2204.07217 [hep-th].
- A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05 (2020) 013, arXiv:1911.12333 [hep-th].
- E. J. Martinec and W. E. Moore, “Modeling Quantum Gravity Effects in Inflation,” JHEP 07 (2014) 053, arXiv:1401.7681 [hep-th].
- D. Anninos, T. Bautista, and B. Mühlmann, “The two-sphere partition function in two-dimensional quantum gravity,” JHEP 09 (2021) 116, arXiv:2106.01665 [hep-th].
- D. Anninos, F. Denef, R. Monten, and Z. Sun, “Higher Spin de Sitter Hilbert Space,” JHEP 10 (2019) 071, arXiv:1711.10037 [hep-th].
- E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba, and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition,” JHEP 07 (2022) 140, arXiv:2110.14670 [hep-th].
- G. Batra, G. B. De Luca, E. Silverstein, G. Torroba, and S. Yang, “Bulk-local dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT holography: the Matter with TT¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” arXiv:2403.01040 [hep-th].
- D. Anninos and D. M. Hofman, “Infrared Realization of dS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Class. Quant. Grav. 35 no. 8, (2018) 085003, arXiv:1703.04622 [hep-th].
- J. Maldacena, G. J. Turiaci, and Z. Yang, “Two dimensional Nearly de Sitter gravity,” JHEP 01 (2021) 139, arXiv:1904.01911 [hep-th].
- J. Cotler and K. Jensen, “Non-perturbative de Sitter Jackiw-Teitelboim gravity,” arXiv:2401.01925 [hep-th].
- T. Anous and J. Skulte, “An invitation to the principal series,” SciPost Phys. 9 no. 3, (2020) 028, arXiv:2007.04975 [hep-th].
- B. J. Pethybridge, “Notes on complex q=2𝑞2q=2italic_q = 2 SYK,” arXiv:2403.04673 [hep-th].
- D. Anninos and D. A. Galante, “Constructing AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT flow geometries,” JHEP 02 (2021) 045, arXiv:2011.01944 [hep-th].
- V. Narovlansky and H. Verlinde, “Double-scaled SYK and de Sitter Holography,” arXiv:2310.16994 [hep-th].
- L. Susskind, “De Sitter Space, Double-Scaled SYK, and the Separation of Scales in the Semiclassical Limit,” arXiv:2209.09999 [hep-th].
- V. A. Letsios, “The eigenmodes for spinor quantum field theory in global de Sitter space–time,” J. Math. Phys. 62 no. 3, (2021) 032303, arXiv:2011.07875 [gr-qc].
- V. A. Letsios, “The (partially) massless spin-3/2 and spin-5/2 fields in de Sitter spacetime as unitary and non-unitary representations of the de Sitter algebra,” arXiv:2206.09851 [hep-th].
- V. A. Letsios, “New conformal-like symmetry of strictly massless fermions in four-dimensional de Sitter space,” arXiv:2310.01702 [hep-th].
- V. A. Letsios, “(Non-)unitarity of strictly and partially massless fermions on de Sitter space II: an explanation based on the group-theoretic properties of the spin-3/2 and spin-5/2 eigenmodes,” J. Phys. A 57 no. 13, (2024) 135401.
- B. Pethybridge and V. Schaub, “Tensors and spinors in de Sitter space,” JHEP 06 (2022) 123, arXiv:2111.14899 [hep-th].
- V. Schaub, “Spinors in (Anti-)de Sitter Space,” JHEP 09 (2023) 142, arXiv:2302.08535 [hep-th].
- D. Anninos, P. Benetti Genolini, and B. Mühlmann, “dS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT supergravity,” JHEP 11 (2023) 145, arXiv:2309.02480 [hep-th].
- A. Strominger, “The dS / CFT correspondence,” JHEP 10 (2001) 034, arXiv:hep-th/0106113.
- J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 05 (2003) 013, arXiv:astro-ph/0210603.
- D. Anninos, R. Mahajan, D. Radičević, and E. Shaghoulian, “Chern-Simons-Ghost Theories and de Sitter Space,” JHEP 01 (2015) 074, arXiv:1405.1424 [hep-th].
- N. Arkani-Hamed, P. Benincasa, and A. Postnikov, “Cosmological Polytopes and the Wavefunction of the Universe,” arXiv:1709.02813 [hep-th].
- N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, “The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities,” JHEP 04 (2020) 105, arXiv:1811.00024 [hep-th].
- S. Jazayeri, E. Pajer, and D. Stefanyszyn, “From locality and unitarity to cosmological correlators,” JHEP 10 (2021) 065, arXiv:2103.08649 [hep-th].
- C. Sleight and M. Taronna, “From AdS to dS exchanges: Spectral representation, Mellin amplitudes, and crossing,” Phys. Rev. D 104 no. 8, (2021) L081902, arXiv:2007.09993 [hep-th].
- M. Hogervorst, J. a. Penedones, and K. S. Vaziri, “Towards the non-perturbative cosmological bootstrap,” JHEP 02 (2023) 162, arXiv:2107.13871 [hep-th].
- D. Anninos and F. Denef, “Cosmic Clustering,” JHEP 06 (2016) 181, arXiv:1111.6061 [hep-th].
- Cambridge Univ. Press, Cambridge, UK, 5, 2012.
- Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11, 2012.
- R. Camporesi and A. Higuchi, “On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces,” J. Geom. Phys. 20 (1996) 1–18, arXiv:gr-qc/9505009.
- D. Vassilevich, “Heat kernel expansion: user’s manual,” Physics Reports 388 no. 5, (2003) 279–360. https://www.sciencedirect.com/science/article/pii/S0370157303003545.
- F. Denef, S. A. Hartnoll, and S. Sachdev, “Black hole determinants and quasinormal modes,” Class. Quant. Grav. 27 (2010) 125001, arXiv:0908.2657 [hep-th].
- D. Anninos, F. Denef, Y. T. A. Law, and Z. Sun, “Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions,” JHEP 01 (2022) 088, arXiv:2009.12464 [hep-th].
- E. Witten, “Fermion Path Integrals And Topological Phases,” Rev. Mod. Phys. 88 no. 3, (2016) 035001, arXiv:1508.04715 [cond-mat.mes-hall].
- I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi, “Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors,” JHEP 05 (2012) 036, arXiv:1112.5342 [hep-th].
- E. Witten, “On S duality in Abelian gauge theory,” Selecta Math. 1 (1995) 383, arXiv:hep-th/9505186.
- Y. T. A. Law, “A compendium of sphere path integrals,” JHEP 12 (2021) 213, arXiv:2012.06345 [hep-th].
- V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.