Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Cost of excursions until first crossing of the origin for random walks and Lévy flights: an exact general formula (2403.16152v2)

Published 24 Mar 2024 in cond-mat.stat-mech and math.PR

Abstract: We consider a discrete-time random walk on a line starting at $x_0\geq 0$ where a cost is incurred at each jump. We obtain an exact analytical formula for the distribution of the total cost of a trajectory until the process crosses the origin for the first time. The formula is valid for arbitrary jump distribution and cost function (heavy- and light-tailed alike), provided they are symmetric and continuous. We analyze the formula in different scaling regimes, and find a high degree of universality with respect to the details of the jump distribution and the cost function. Applications are given to the motion of an active run-and-tumble particle in one dimension and extensions to multiple cost variables are considered. The analytical results are in perfect agreement with numerical simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. G. Schehr and S. N. Majumdar, “Exact record and order statistics of random walks viafirst-passage ideas”, appeared in the special volume”First-Passage Phenomena and Their Applications”, Eds. R. Metzler, G.Oshanin, S. Redner. World Scientific (2014).
  2. P. Bovet and S. Benhamou, “Spatial analysis of animals’ movements using a correlated random walk model”, J. Theor. Biol. 131, 419 (1988).
  3. E. Sparre Andersen, “On the fluctuations of sums of random variables II”, Math. Scand.2, 195 (1954).
  4. C. Godreche, S. N. Majumdar, and G. Schehr,“Exact statistics of record increments of random walks and Lévy flights”, Phys. Rev. Lett. 117, 010601 (2016).
  5. F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr, “ Universal Survival Probability for a d𝑑ditalic_d-DimensionalRun-and-Tumble Particle”, Phys. Rev. Lett. 124, 090603 (2020).
  6. F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr, “Universal properties of a run-and-tumble particle in arbitrary dimension”, Phys. Rev. E 102, 042133 (2020).
  7. N. R. Smith, S. N. Majumdar, and G. Schehr,“Striking universalities in stochastic resetting processes”, Europhys. Lett. 142, 51002 (2023).
  8. A. Gouberman and M. Siegle, “Markov reward models and Markov decision processes in discrete and continuous time: Performance evaluation and optimization”, in Lecture Notes in Computer Science, Vol. 8453, edited by A. Remke and M. Stoelinga (Springer, Berlin, 2014).
  9. P. J. M. Havinga and G. J. M. Smit, “Energy-Efficient Wireless Networking for Multimedia Applications”, Wireless Commun. Mobile Comput. 1, 165 (2001).
  10. L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan, “Model checking Markov reward models with impulserewards”, in Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05), Yokohama, Japan (IEEE, Yokohama, 2005), pp. 722–731.
  11. A. Angius and A. Horváth, “Analysis of stochastic reaction networks with Markov reward models”, in Proceedings of the 9th International Conference on Computational Methods in Systems Biology (CMSB ’11) (Association for Computing Machinery, New York, 2011), pp. 45–54.
  12. G. Amico, J. Janssen, and R. Manca, “Discrete time Markov reward processes a motor car insurance example”, Technol. Invest. 1, 135 (2010).
  13. V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. Arcelli Fontana, “A systematic literature review on Technical Debt prioritization: Strategies, processes, factors, and tools”, J. Syst. Software 171, 110827 https://doi.org/10.1016/j.jss.2020.110827.
  14. M. Bramson and D. Griffeath, “Capture Problems For Coupled Random Walks”. In: Durrett, R., Kesten, H. (eds) Random Walks, Brownian Motion, and Interacting Particle Systems. Progress in Probability, vol. 28. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0459-6_7 (1991).
  15. B. Schulz, S. Trimper, and M. Schulz, “Random walks in one-dimensional environments with feedback-coupling”, Eur. Phys. J. B 15, 499–505 (2000). https://doi.org/10.1007/s100510051152
  16. S. N. Majumdar, F. Mori, and P. Vivo, “Cost of diffusion: nonlinearity and giant fluctuations”, Phys. Rev. Lett. 130, 237102 (2023).
  17. S. N. Majumdar, F. Mori, and P. Vivo, “Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget”, Phys. Rev. E 108, 064122 (2023).
  18. A. Vanossi, N. Manini, and E. Tosatti. “Static and dynamic friction in sliding colloidal monolayers”, Proc. Natl. Acad. Sci. U.S.A. 109, 16429 (2012).
  19. P. Chauve, T. Giamarchi, and P. Le Doussal, “Creep and depinning in disordered media”, Phys. Rev. B 62, 6241 (2000).
  20. O. Duemmer and W. Krauth, “Critical exponents of thedriven elastic string in a disordered medium”, Phys. Rev. E 71, 061601 (2005).
  21. C. Reichhardt and C. J. O. Reichhardt. “Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review”, Rep. Prog. Phys. 80, 026501 (2016).
  22. T. Menais, “Polymer translocation under a pulling force:Scaling arguments and threshold forces”, Phys. Rev. E 97, 022501 (2018).
  23. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperaturesuperconductors”, Rev. Mod. Phys. 66, 1125 (1994).
  24. A. Pertsinidis and X. S. Ling. “Statics and dynamics of 2D colloidal crystals in a random pinning potential”, Phys. Rev. Lett. 100, 028303 (2008).
  25. J. Fuchs, S. Goldt, and U. Seifert, “Stochastic thermodynamics of resetting”, Europhys. Lett. 113, 60009 (2016).
  26. F. Mori, K. S. Olsen, and S. Krishnamurthy, “Entropy production of resetting processes”, Phys. Rev. Research 5, 023103 (2023).
  27. J. C. Sunil, R. A. Blythe, M. R. Evans and S. N. Majumdar, “The cost of stochastic resetting”, J. Phys. A: Math. Theor. 56, 395001 (2023).
  28. S. N. Majumdar and A. J. Bray, “Large-deviation functions for nonlinear functionals of a Gaussian stationary Markov process”, Phys. Rev. E 65, 051112 (2002).
  29. S. N. Majumdar and A. Comtet, “Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces”, J. Stat. Phys. 119, 777 (2005).
  30. S. N. Majumdar and B. Meerson, “Statistics of first-passage Brownian functionals” J. Stat. Mech.: Theory Exp. 023202 (2020).
  31. P. Singh and A. Pal, “First-passage Brownian functionals with stochastic resetting”, J. Phys. A: Math. Theor. 55, 234001 (2022).
  32. B. Meerson, “Geometrical optics of first-passage functionals of random acceleration”, Phys. Rev. E 107, 064122 (2023).
  33. M. Radice, “First-passage functionals of Brownian motion in logarithmic potentials and heterogeneous diffusion”, Phys. Rev. E 108, 044151 (2023).
  34. S. N. Majumdar, “Brownian Functionals in Physics and Computer Science”, Curr. Sci. 89, 2076 (2005).
  35. See Supplemental Material for an extended derivation of the main result, and for many worked examples of distributions and cost functions for which the Laplace transform can be inverted explicitly. The Supplemental Material includes Ref. [53].
  36. M. Kac, “A stochastic model related to the telegrapher’s equation”, Rocky Mount. J. Math. 4, 497 (1974).
  37. W. Feller. An Introduction to Probability Theory and its Applications (New York: Wiley, 1957).
  38. A. J. Bray, S. N. Majumdar, and G. Schehr, “Persistence and first-passage properties in nonequilibrium systems”, Adv. in Phys. 62, 225 (2013).
  39. F. Pollaczek, “Fonctions caracteristiques de certaines répartitions définies au moyende la notion d’ordre”, C. R. Acad. Sci. Paris, 234, 2334 (1952).
  40. F. Spitzer, “A combinatorial lemma and its application to probability theory”, Trans. Am. Math. Soc. 82, 323 (1956).
  41. F. Spitzer, “The Wiener-Hopf equation whose kernel is a probability density”, Duke Math. J. 24 327 (1957).
  42. S. N. Majumdar, “Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records”, Physica A,389, 4299 (2010).
  43. A. Comtet and S.N. Majumdar, “Precise Asymptotics for a Random Walker’s Maximum”, J. Stat. Mech. 06013 (2005).
  44. S.N. Majumdar, A. Comtet, and R.M. Ziff, “Unified Solution of the Expected Maximum of a Random Walk and the Discrete Flux to a Spherical Trap”, J. Stat. Phys. 122, 833 (2006).
  45. G. Wergen, S.N. Majumdar, and G. Schehr, “Record Statistics for Multiple Random Walks”, Phys. Rev. E 86, 011119 (2012).
  46. S. N. Majumdar, P. Mounaix, and G. Schehr, “Survival Probability of Random Walks and Lévy Flights on a Semi-Infinite Line”, J. Phys. A: Math. Theor. 50, 465002 (2017).
  47. D.S. Grebenkov, Y. Lanoiselée, and S. N. Majumdar, “Mean perimeter and mean area of the convex hull over planar randomwalks”, J. Stat. Mech. 103203 (2017).
  48. B. De Bruyne, S. N. Majumdar, and G. Schehr, “Expected maximum of bridge random walks and Lévy flights”, J. Stat. Mech. 083215 (2021).
  49. A. Mummery, F. Mori, and S. Balbus, “The dynamics of accretion flows near to the innermost stable circular orbit”, preprint: arXiv 2402.05561 (2024)  .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 19 likes.

Upgrade to Pro to view all of the tweets about this paper: