Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generally covariant geometric momentum and geometric potential for a Dirac fermion on a two-dimensional hypersurface (2403.15982v1)

Published 24 Mar 2024 in quant-ph, math-ph, and math.MP

Abstract: Geometric momentum is the proper momentum for a moving particle constrained on a curved surface, which depends on the outer curvature and has observable effects. In the context of multi-component quantum states, geometric momentum should be rewritten as generally covariant geometric momentum. For a Dirac fermion constrained on a two-dimensional hypersurface, we give the generally covariant geometric momentum, and show that on the pseudosphere and the helical surface there exist no curvature-induced geometric potentials. These results verify that the dynamical quantization conditions are effective in dealing with constrained systems on hypersurfaces, and one could obtain the generally convariant geometric momentum and the geometric potential of a spin particle constrained on surfaces with definite parametric equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: