The $L^p$-spectrum of the Laplacian on forms over warped products and Kleinian groups (2403.15888v1)
Abstract: In this article, we generalize the set of manifolds over which the $Lp$-spectrum of the Laplacian on $k$-forms depends on $p$. We will consider the case of manifolds that are warped products at infinity and certain quotients of Hyperbolic space. In the case of warped products at infinity we prove that the $Lp$-spectrum of the Laplacian on $k$-forms contains a parabolic region which depends on $k$, $p$ and the limiting curvature $a_0$ at infinity. For $M=\mathbb{H}{N+1}/\Gamma $ with $\Gamma$ a geometrically finite group such that $M$ has infinite volume and no cusps, we prove that the $Lp$-spectrum of the Laplacian on $k$-forms is a exactly a parabolic region together with a set of isolated eigenvalues on the real line.
- Francesca Antoci. On the spectrum of the Laplace–Beltrami operator for p𝑝pitalic_p-forms for a class of warped product metrics. Advances in Mathematics, 188(2):247–293, 2004.
- Arthur L Besse. Einstein Manifolds. Springer Science & Business Media, 2007.
- William M Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic press, 1986.
- David Borthwick. Scattering Theory for Conformally Compact Metrics with Variable Curvature at Infinity. Journal of Functional Analysis, 184(2):313–376, 2001.
- Nelia Charalambous. On the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT independence of the spectrum of the Hodge Laplacian on non-compact manifolds. Journal of Functional Analysis, 224(1):22–48, 2005.
- Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spectral theory for the Laplacian on forms. arXiv, 2401.02136, 2024.
- Old and New Aspects in Spectral Geometry, volume 534. Springer Science & Business Media, 2001.
- The Laplace spectrum on conformally compact manifolds. arXiv, 2306.09291, 2023.
- Edward Brian Davies. Heat Kernels and Spectral Theory. Number 92 in Cambridge Tracts in Mathematics. Cambridge University Press, 1989.
- Heat Kernel Bounds on Hyperbolic Space and Kleinian Groups. Proceedings of the London Mathematical Society, 3(1):182–208, 1988.
- Harold Donnelly. The Differential Form Spectrum of Hyperbolic Space. Manuscripta mathematica, 33(3):365–385, 1981.
- Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT spectral theory of Kleinian groups. Journal of Functional Analysis, 78(1):116–136, 1988.
- S. Gallot and D. Meyer. Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne. J. Math. Pures Appl. (9), 54(3):259–284, 1975.
- Alexander Grigoryan. Heat Kernel and Analysis on Manifolds, volume 47. American Mathematical Soc., 2009.
- Philip Hartman. Ordinary Differential Equations. SIAM, 2002.
- Domination of semigroups and generalization of Kato’s inequality. Duke Math. J., 44(4):893–904, 1977.
- The spectrum of a Schrödinger Operator in Lp(ℝν)subscript𝐿𝑝superscriptℝ𝜈L_{p}(\mathbb{R}^{\nu})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ) is p𝑝pitalic_p-independent. Communications in Mathematical Physics, 104:243–250, 1986.
- John M Lee. The spectrum of an asymptotically hyperbolic Einstein manifold. arXiv preprint dg-ga/9409003, 1994.
- Peter Li. Geometric Analysis, volume 134. Cambridge University Press, 2012.
- The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. Journal of Functional Analysis, 46(3):280–350, 1982.
- Rafe Mazzeo. The Hodge cohomology of a conformally compact metric. Journal of Differential Geometry, 28(2):309–339, 1988.
- Hodge theory on hyperbolic manifolds. Duke Math. J., 61(1):509–559, 1990.
- S. J. Patterson. The limit set of a Fuchsian group. Acta Math., 136(3-4):241–273, 1976.
- Peter Petersen. Riemannian Geometry, volume 171. Springer, 2006.
- Karl-Theodor Sturm. On the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-Spectrum of Uniformly Elliptic Operators on Riemannian Manifolds. Journal of Functional Analysis, 118(2):442–453, 1993.
- Michael Eric Taylor. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-estimates on functions of the Laplace operator. Duke Mathematical Journal, 58:773–793, 1989.
- Loring W Tu. An Introduction to Manifolds. Springer, 2011.
- Andreas Weber. Heat Kernel Estimates and Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-Spectral Theory of Locally Symmetric Spaces. PhD Thesis, 2007.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.