Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The $L^p$-spectrum of the Laplacian on forms over warped products and Kleinian groups (2403.15888v1)

Published 23 Mar 2024 in math.DG and math.SP

Abstract: In this article, we generalize the set of manifolds over which the $Lp$-spectrum of the Laplacian on $k$-forms depends on $p$. We will consider the case of manifolds that are warped products at infinity and certain quotients of Hyperbolic space. In the case of warped products at infinity we prove that the $Lp$-spectrum of the Laplacian on $k$-forms contains a parabolic region which depends on $k$, $p$ and the limiting curvature $a_0$ at infinity. For $M=\mathbb{H}{N+1}/\Gamma $ with $\Gamma$ a geometrically finite group such that $M$ has infinite volume and no cusps, we prove that the $Lp$-spectrum of the Laplacian on $k$-forms is a exactly a parabolic region together with a set of isolated eigenvalues on the real line.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Francesca Antoci. On the spectrum of the Laplace–Beltrami operator for p𝑝pitalic_p-forms for a class of warped product metrics. Advances in Mathematics, 188(2):247–293, 2004.
  2. Arthur L Besse. Einstein Manifolds. Springer Science & Business Media, 2007.
  3. William M Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic press, 1986.
  4. David Borthwick. Scattering Theory for Conformally Compact Metrics with Variable Curvature at Infinity. Journal of Functional Analysis, 184(2):313–376, 2001.
  5. Nelia Charalambous. On the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT independence of the spectrum of the Hodge Laplacian on non-compact manifolds. Journal of Functional Analysis, 224(1):22–48, 2005.
  6. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spectral theory for the Laplacian on forms. arXiv, 2401.02136, 2024.
  7. Old and New Aspects in Spectral Geometry, volume 534. Springer Science & Business Media, 2001.
  8. The Laplace spectrum on conformally compact manifolds. arXiv, 2306.09291, 2023.
  9. Edward Brian Davies. Heat Kernels and Spectral Theory. Number 92 in Cambridge Tracts in Mathematics. Cambridge University Press, 1989.
  10. Heat Kernel Bounds on Hyperbolic Space and Kleinian Groups. Proceedings of the London Mathematical Society, 3(1):182–208, 1988.
  11. Harold Donnelly. The Differential Form Spectrum of Hyperbolic Space. Manuscripta mathematica, 33(3):365–385, 1981.
  12. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT spectral theory of Kleinian groups. Journal of Functional Analysis, 78(1):116–136, 1988.
  13. S. Gallot and D. Meyer. Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne. J. Math. Pures Appl. (9), 54(3):259–284, 1975.
  14. Alexander Grigoryan. Heat Kernel and Analysis on Manifolds, volume 47. American Mathematical Soc., 2009.
  15. Philip Hartman. Ordinary Differential Equations. SIAM, 2002.
  16. Domination of semigroups and generalization of Kato’s inequality. Duke Math. J., 44(4):893–904, 1977.
  17. The spectrum of a Schrödinger Operator in Lp⁢(ℝν)subscript𝐿𝑝superscriptℝ𝜈L_{p}(\mathbb{R}^{\nu})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ) is p𝑝pitalic_p-independent. Communications in Mathematical Physics, 104:243–250, 1986.
  18. John M Lee. The spectrum of an asymptotically hyperbolic Einstein manifold. arXiv preprint dg-ga/9409003, 1994.
  19. Peter Li. Geometric Analysis, volume 134. Cambridge University Press, 2012.
  20. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. Journal of Functional Analysis, 46(3):280–350, 1982.
  21. Rafe Mazzeo. The Hodge cohomology of a conformally compact metric. Journal of Differential Geometry, 28(2):309–339, 1988.
  22. Hodge theory on hyperbolic manifolds. Duke Math. J., 61(1):509–559, 1990.
  23. S. J. Patterson. The limit set of a Fuchsian group. Acta Math., 136(3-4):241–273, 1976.
  24. Peter Petersen. Riemannian Geometry, volume 171. Springer, 2006.
  25. Karl-Theodor Sturm. On the Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-Spectrum of Uniformly Elliptic Operators on Riemannian Manifolds. Journal of Functional Analysis, 118(2):442–453, 1993.
  26. Michael Eric Taylor. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-estimates on functions of the Laplace operator. Duke Mathematical Journal, 58:773–793, 1989.
  27. Loring W Tu. An Introduction to Manifolds. Springer, 2011.
  28. Andreas Weber. Heat Kernel Estimates and Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-Spectral Theory of Locally Symmetric Spaces. PhD Thesis, 2007.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: