Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Channel-Resilient CSI-Based RF Fingerprinting using Deep Learning (2403.15739v1)

Published 23 Mar 2024 in eess.SP

Abstract: This work introduces DeepCRF, a deep learning framework designed for channel state information-based radio frequency fingerprinting (CSI-RFF). The considered CSI-RFF is built on micro-CSI, a recently discovered radio-frequency (RF) fingerprint that manifests as micro-signals appearing on the channel state information (CSI) curves of commercial WiFi devices. Micro-CSI facilitates CSI-RFF which is more streamlined and easily implementable compared to existing schemes that rely on raw I/Q samples. The primary challenge resides in the precise extraction of micro-CSI from the inherently fluctuating CSI measurements, a process critical for reliable RFF. The construction of a framework that is resilient to channel variability is essential for the practical deployment of CSI-RFF techniques. DeepCRF addresses this challenge with a thoughtfully trained convolutional neural network (CNN). This network's performance is significantly enhanced by employing effective and strategic data augmentation techniques, which bolster its ability to generalize to novel, unseen channel conditions. Furthermore, DeepCRF incorporates supervised contrastive learning to enhance its robustness against noises. Our evaluations demonstrate that DeepCRF significantly enhances the accuracy of device identification across previously unencountered channels. It outperforms both the conventional model-based methods and standard CNN that lack our specialized training and enhancement strategies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.