Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric inference of higher order interaction patterns in networks (2403.15635v2)

Published 22 Mar 2024 in cs.SI, cond-mat.stat-mech, cs.IT, math.IT, physics.soc-ph, and stat.ME

Abstract: We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network motifs: simple building blocks of complex networks,” Science, vol. 298, no. 5594, p. 824, 2002.
  2. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, “Superfamilies of evolved and designed networks,” Science, vol. 303, no. 5663, p. 1538, 2004.
  3. B. Bollobás, S. Janson, and O. Riordan, “Sparse random graphs with clustering,” Random Structures & Algorithms, vol. 38, no. 3, pp. 269–323, 2011.
  4. B. Karrer and M. E. J. Newman, “Random graphs containing arbitrary distributions of subgraphs,” Physical Review E, vol. 82, no. 6, p. 66118, 2010.
  5. A. E. Wegner and S. Olhede, “Atomic subgraphs and the statistical mechanics of networks,” Physical Review E, vol. 103, p. 042311, 4 2021.
  6. Cambridge: Cambridge University Press, 2012.
  7. F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J. G. Young, and G. Petri, “Networks beyond pairwise interactions: Structure and dynamics,” Physics Reports, 6 2020.
  8. P. S. Skardal and A. Arenas, “Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching,” Communications Physics, vol. 3, pp. 1–6, 12 2020.
  9. A. P. Millán, J. J. Torres, and G. Bianconi, “Explosive Higher-Order Kuramoto Dynamics on Simplicial Complexes,” Physical Review Letters, vol. 124, p. 218301, 5 2020.
  10. I. Iacopini, G. Petri, A. Barrat, and V. Latora, “Simplicial models of social contagion,” Nature Communications, vol. 10, p. 2485, 12 2019.
  11. J. G. Young, G. Petri, and T. P. Peixoto, “Hypergraph reconstruction from network data,” Communications Physics, vol. 4, 12 2021.
  12. P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Social Networks, vol. 5, pp. 109–137, 6 1983.
  13. B. Karrer and M. E. J. Newman, “Stochastic blockmodels and community structure in networks,” Physical Review E, vol. 83, no. 1, p. 16107, 2011.
  14. T. P. Peixoto, “Nonparametric bayesian inference of the microcanonical stochastic block model,” Physical Review E, vol. 95, no. 1, p. 012317, 2017.
  15. T. P. Peixoto, “Parsimonious module inference in large networks,” Physical review letters, vol. 110, no. 14, p. 148701, 2013.
  16. M. Newman and T. P. Peixoto, “Generalized Communities in Networks,” Physical Review Letters, vol. 115, p. 088701, 8 2015.
  17. M. E. J. Newman and G. Reinert, “Estimating the number of communities in a network,” 5 2016.
  18. T. P. Peixoto, “Inferring the mesoscale structure of layered, edge-valued, and time-varying networks,” Physical Review E, vol. 92, p. 042807, 10 2015.
  19. M. E. J. Newman, “Network structure from rich but noisy data,” Nature Physics, vol. 14, pp. 542–545, 6 2018.
  20. T. P. Peixoto, “Reconstructing Networks with Unknown and Heterogeneous Errors,” Physical Review X, vol. 8, p. 041011, 10 2018.
  21. T. P. Peixoto, “Network Reconstruction and Community Detection from Dynamics,” Physical Review Letters, vol. 123, p. 128301, 9 2019.
  22. A. E. Wegner, “Subgraph covers: An information-theoretic approach to motif analysis in networks,” Physical Review X, vol. 4, no. 4, p. 041026, 2014.
  23. A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in coding and modeling,” Information Theory, IEEE Transactions on, vol. 44, no. 6, pp. 2743–2760, 1998.
  24. D. B. Larremore, A. Clauset, and C. O. Buckee, “A network approach to analyzing highly recombinant malaria parasite genes,” PLoS computational biology, vol. 9, no. 10, p. e1003268, 2013.
  25. S. J. Cook, T. A. Jarrell, C. A. Brittin, Y. Wang, A. E. Bloniarz, M. A. Yakovlev, K. C. Nguyen, L. T.-H. Tang, E. A. Bayer, J. S. Duerr, et al., “Whole-animal connectomes of both caenorhabditis elegans sexes,” Nature, vol. 571, no. 7763, pp. 63–71, 2019.
  26. B. Szalkai, C. Kerepesi, B. Varga, and V. Grolmusz, “The Budapest Reference Connectome Server v2.0,” Neuroscience Letters, vol. 595, pp. 60–62, 5 2015.
  27. M. E. J. Newman, “Finding community structure in networks using the eigenvectors of matrices,” Physical Review E, vol. 74, p. 036104, 9 2006.
  28. S. R. Collins, P. Kemmeren, X.-C. Zhao, J. F. Greenblatt, F. Spencer, F. C. Holstege, J. S. Weissman, and N. J. Krogan, “Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae,” Molecular & Cellular Proteomics, vol. 6, no. 3, pp. 439–450, 2007.
  29. J. G. White, E. Southgate, J. N. Thomson, S. Brenner, et al., “The structure of the nervous system of the nematode caenorhabditis elegans,” Philos Trans R Soc Lond B Biol Sci, vol. 314, no. 1165, pp. 1–340, 1986.
  30. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The large-scale organization of metabolic networks,” Nature, vol. 407, no. 6804, pp. 651–654, 2000.
  31. M. Adler and R. Medzhitov, “Emergence of dynamic properties in network hypermotifs,” Proceedings of the National Academy of Sciences, vol. 119, no. 32, p. e2204967119, 2022.
  32. R. W. Hanson and O. E. Owen, “Gluconeogenesis,” Encyclopedia of Biological Chemistry: Second Edition, pp. 381–386, 1 2013.
  33. R. Curi, P. Newsholme, G. Marzuca-Nassr, H. Takahashi, S. Hirabara, V. Cruzat, M. Krause, and P. I. H. de Bittencourt, “Regulatory principles in metabolism–then and now,” Biochemical Journal, vol. 473, pp. 1845–1857, 7 2016.
  34. A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization of complex networks.,” Science (New York, N.Y.), vol. 353, pp. 163–6, 7 2016.
  35. G. Bianconi, “Entropy of network ensembles,” Physical Review E, vol. 79, no. 3, p. 036114, 2009.
  36. E. A. Bender and J. T. Butler, “Asymptotic Aproximations for the Number of Fanout-Free Functions,” IEEE Transactions on Computers, vol. 27, no. 12, 1978.
  37. J. Rissanen, “A universal prior for integers and estimation by minimum description length,” The Annals of statistics, pp. 416–431, 1983.
  38. A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the Set Covering Problem,” Annals of Operations Research 2000 98:1, vol. 98, no. 1, pp. 353–371, 2000.
  39. C. Solnon, “Alldifferent-based filtering for subgraph isomorphism,” Artificial Intelligence, vol. 174, no. 12-13, pp. 850–864, 2010.
  40. T. P. Peixoto, “Hierarchical Block Structures and High-Resolution Model Selection in Large Networks,” Physical Review X, vol. 4, p. 011047, 3 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 20 likes about this paper.