Bipartite Sachdev-Ye Models with Read-Saleur Symmetries (2403.15270v2)
Abstract: We introduce an SU(M)-symmetric disordered bipartite spin model with unusual characteristics. Although superficially similar to the Sachdev-Ye model, it has several markedly different properties for M>2. In particular, it has a large non-trivial nullspace whose dimension grows exponentially with system size. The states in this nullspace are frustration-free, and are ground states when the interactions are ferromagnetic. The exponential growth of the nullspace leads to Hilbert-space fragmentation and a violation of the eigenstate thermalization hypothesis. We demonstrate that the commutant algebra responsible for this fragmentation is a non-trivial subalgebra of the Read-Saleur commutant algebra of certain nearest-neighbour models such as the spin-1 biquadratic spin chain. We also discuss the low-energy behaviour of correlations for the disordered version of this model in the limit of a large number of spins and large M, using techniques similar to those applied to the SY model. We conclude by generalizing the Shiraishi-Mori embedding formalism to non-local models, and apply it to turn some of our nullspace states into quantum many-body scars.
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
- S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022a).
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
- Z. Papić, Weak ergodicity breaking through the lens of quantum entanglement (2021), arXiv:2108.03460 [cond-mat.quant-gas] .
- J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on Progress in Physics 81, 082001 (2018).
- R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
- S. Moudgalya and O. I. Motrunich, Numerical methods for detecting symmetries and commutant algebras, Phys. Rev. B 107, 224312 (2023a).
- M. T. Batchelor and M. N. Barber, Spin-s quantum chains and Temperley-Lieb algebras, Journal of Physics A: Mathematical and General 23, L15 (1990).
- B. Aufgebauer and A. Klümper, Quantum spin chains of Temperley–Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature, Journal of Statistical Mechanics: Theory and Experiment 2010, P05018 (2010).
- S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
- A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 134406 (2001).
- M. Fremling, M. Haque, and L. Fritz, Bipartite Sachdev-Ye-Kitaev model: Conformal limit and level statistics, Phys. Rev. D 105, 066017 (2022).
- N. Shiraishi and T. Mori, Systematic construction of counterexamples to the eigenstate thermalization hypothesis, Phys. Rev. Lett. 119, 030601 (2017).
- S. Moudgalya and O. I. Motrunich, From symmetries to commutant algebras in standard Hamiltonians, Annals of Physics 455, 169384 (2023b).
- S. Moudgalya and O. I. Motrunich, Exhaustive characterization of quantum many-body scars using commutant algebras (2022b), arXiv:2209.03377 [cond-mat.str-el] .
- J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, Journal of High Energy Physics 2017, 149 (2017).
- M. Haque and P. A. McClarty, Eigenstate thermalization scaling in Majorana clusters: From chaotic to integrable Sachdev-Ye-Kitaev models, Phys. Rev. B 100, 115122 (2019).
- D. Jakab, G. Szirmai, and Z. Zimborás, The bilinear–biquadratic model on the complete graph, Journal of Physics A: Mathematical and Theoretical 51, 105201 (2018).
- D. Jakab and Z. Zimborás, Quantum phases of collective SU(3) spin systems with bipartite symmetry, Phys. Rev. B 103, 214448 (2021).
- A. M. Perelomov and V. S. Popov, Casimir operators for semisimple Lie groups, Mathematics of the USSR-Izvestiya 2, 1313 (1968).
- M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison Wesley Series in Physics (Dover Publications, 1989).
- H. Schlosser, A closed formula for the decomposition of the Kronecker product of irreducible representations of SU(n), Mathematische Nachrichten 134, 237 (1987).
- M. Christos, F. M. Haehl, and S. Sachdev, Spin liquid to spin glass crossover in the random quantum Heisenberg magnet, Phys. Rev. B 105, 085120 (2022b).
- J. R. Garrison and T. Grover, Does a single eigenstate encode the full Hamiltonian?, Phys. Rev. X 8, 021026 (2018).
- X.-L. Qi and D. Ranard, Determining a local Hamiltonian from a single eigenstate, Quantum 3, 159 (2019).
- D. T. Stephen, O. Hart, and R. M. Nandkishore, Ergodicity breaking provably robust to arbitrary perturbations (2022), arXiv:2209.03966 [cond-mat.stat-mech] .
- G. Zhang and Z. Song, Quantum scars in spin-isotropic Heisenberg clusters, New Journal of Physics 25, 053025 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.