Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Bipartite Sachdev-Ye Models with Read-Saleur Symmetries (2403.15270v2)

Published 22 Mar 2024 in cond-mat.stat-mech, cond-mat.str-el, and hep-th

Abstract: We introduce an SU(M)-symmetric disordered bipartite spin model with unusual characteristics. Although superficially similar to the Sachdev-Ye model, it has several markedly different properties for M>2. In particular, it has a large non-trivial nullspace whose dimension grows exponentially with system size. The states in this nullspace are frustration-free, and are ground states when the interactions are ferromagnetic. The exponential growth of the nullspace leads to Hilbert-space fragmentation and a violation of the eigenstate thermalization hypothesis. We demonstrate that the commutant algebra responsible for this fragmentation is a non-trivial subalgebra of the Read-Saleur commutant algebra of certain nearest-neighbour models such as the spin-1 biquadratic spin chain. We also discuss the low-energy behaviour of correlations for the disordered version of this model in the limit of a large number of spins and large M, using techniques similar to those applied to the SY model. We conclude by generalizing the Shiraishi-Mori embedding formalism to non-local models, and apply it to turn some of our nullspace states into quantum many-body scars.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
  2. S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022a).
  3. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  4. Z. Papić, Weak ergodicity breaking through the lens of quantum entanglement (2021), arXiv:2108.03460 [cond-mat.quant-gas] .
  5. J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on Progress in Physics 81, 082001 (2018).
  6. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
  7. S. Moudgalya and O. I. Motrunich, Numerical methods for detecting symmetries and commutant algebras, Phys. Rev. B 107, 224312 (2023a).
  8. M. T. Batchelor and M. N. Barber, Spin-s quantum chains and Temperley-Lieb algebras, Journal of Physics A: Mathematical and General 23, L15 (1990).
  9. B. Aufgebauer and A. Klümper, Quantum spin chains of Temperley–Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature, Journal of Statistical Mechanics: Theory and Experiment 2010, P05018 (2010).
  10. S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
  11. A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 134406 (2001).
  12. M. Fremling, M. Haque, and L. Fritz, Bipartite Sachdev-Ye-Kitaev model: Conformal limit and level statistics, Phys. Rev. D 105, 066017 (2022).
  13. N. Shiraishi and T. Mori, Systematic construction of counterexamples to the eigenstate thermalization hypothesis, Phys. Rev. Lett. 119, 030601 (2017).
  14. S. Moudgalya and O. I. Motrunich, From symmetries to commutant algebras in standard Hamiltonians, Annals of Physics 455, 169384 (2023b).
  15. S. Moudgalya and O. I. Motrunich, Exhaustive characterization of quantum many-body scars using commutant algebras (2022b), arXiv:2209.03377 [cond-mat.str-el] .
  16. J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, Journal of High Energy Physics 2017, 149 (2017).
  17. M. Haque and P. A. McClarty, Eigenstate thermalization scaling in Majorana clusters: From chaotic to integrable Sachdev-Ye-Kitaev models, Phys. Rev. B 100, 115122 (2019).
  18. D. Jakab, G. Szirmai, and Z. Zimborás, The bilinear–biquadratic model on the complete graph, Journal of Physics A: Mathematical and Theoretical 51, 105201 (2018).
  19. D. Jakab and Z. Zimborás, Quantum phases of collective SU(3) spin systems with bipartite symmetry, Phys. Rev. B 103, 214448 (2021).
  20. A. M. Perelomov and V. S. Popov, Casimir operators for semisimple Lie groups, Mathematics of the USSR-Izvestiya 2, 1313 (1968).
  21. M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison Wesley Series in Physics (Dover Publications, 1989).
  22. H. Schlosser, A closed formula for the decomposition of the Kronecker product of irreducible representations of SU(n), Mathematische Nachrichten 134, 237 (1987).
  23. M. Christos, F. M. Haehl, and S. Sachdev, Spin liquid to spin glass crossover in the random quantum Heisenberg magnet, Phys. Rev. B 105, 085120 (2022b).
  24. J. R. Garrison and T. Grover, Does a single eigenstate encode the full Hamiltonian?, Phys. Rev. X 8, 021026 (2018).
  25. X.-L. Qi and D. Ranard, Determining a local Hamiltonian from a single eigenstate, Quantum 3, 159 (2019).
  26. D. T. Stephen, O. Hart, and R. M. Nandkishore, Ergodicity breaking provably robust to arbitrary perturbations (2022), arXiv:2209.03966 [cond-mat.stat-mech] .
  27. G. Zhang and Z. Song, Quantum scars in spin-isotropic Heisenberg clusters, New Journal of Physics 25, 053025 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube