Hierarchical Information Enhancement Network for Cascade Prediction in Social Networks (2403.15257v1)
Abstract: Understanding information cascades in networks is a fundamental issue in numerous applications. Current researches often sample cascade information into several independent paths or subgraphs to learn a simple cascade representation. However, these approaches fail to exploit the hierarchical semantic associations between different modalities, limiting their predictive performance. In this work, we propose a novel Hierarchical Information Enhancement Network (HIENet) for cascade prediction. Our approach integrates fundamental cascade sequence, user social graphs, and sub-cascade graph into a unified framework. Specifically, HIENet utilizes DeepWalk to sample cascades information into a series of sequences. It then gathers path information between users to extract the social relationships of propagators. Additionally, we employ a time-stamped graph convolutional network to aggregate sub-cascade graph information effectively. Ultimately, we introduce a Multi-modal Cascade Transformer to powerfully fuse these clues, providing a comprehensive understanding of cascading process. Extensive experiments have demonstrated the effectiveness of the proposed method.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.