Doped stabilizer states in many-body physics and where to find them (2403.14912v3)
Abstract: This work uncovers a fundamental connection between doped stabilizer states, a concept from quantum information theory, and the structure of eigenstates in perturbed many-body quantum systems. We prove that for Hamiltonians consisting of a sum of commuting Pauli operators (i.e., stabilizer Hamiltonians) and a perturbation composed of a limited number of arbitrary Pauli terms, the eigenstates can be represented as doped stabilizer states with small stabilizer nullity. This result enables the application of stabilizer techniques to a broad class of many-body systems, even in highly entangled regimes. Building on this, we develop efficient classical algorithms for tasks such as finding low-energy eigenstates, simulating quench dynamics, preparing Gibbs states, and computing entanglement entropies in these systems. Our work opens up new possibilities for understanding the robustness of topological order and the dynamics of many-body systems under perturbations, paving the way for novel insights into the interplay of quantum information, entanglement, and many-body systems.
- Quantum Chaos is Quantum. Quantum, 5:453–453, May 2021. doi: 10.22331/q-2021-05-04-453.
- Transitions in entanglement complexity in random quantum circuits by measurements. Physics Letters A, 418:127721–127721, 2021. doi: 10.1016/j.physleta.2021.127721.
- Daniel Gottesman. The Heisenberg Representation of Quantum Computers, July 1998.
- Improved simulation of stabilizer circuits. Physical Review A, 70:052328–052328, November 2004. doi: 10.1103/PhysRevA.70.052328.
- Topological quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 09 2002. ISSN 0022-2488. doi: 10.1063/1.1499754. URL https://doi.org/10.1063/1.1499754.
- Alexei Yurievich Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003. doi: 10.1016/S0003-4916(02)00018-0.
- Jeongwan Haah. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A, 83:042330, Apr 2011. doi: 10.1103/PhysRevA.83.042330. URL https://link.aps.org/doi/10.1103/PhysRevA.83.042330.
- Jeongwan Haah. Lattice quantum codes and exotic topological phases of matter, 2013.
- Fracton topological order, generalized lattice gauge theory, and duality. Phys. Rev. B, 94:235157, Dec 2016. doi: 10.1103/PhysRevB.94.235157. URL https://link.aps.org/doi/10.1103/PhysRevB.94.235157.
- Glassy quantum dynamics in translation invariant fracton models. Phys. Rev. B, 95:155133, Apr 2017. doi: 10.1103/PhysRevB.95.155133. URL https://link.aps.org/doi/10.1103/PhysRevB.95.155133.
- Foliated fracton order from gauging subsystem symmetries. SciPost Phys., 6:041, 2019. doi: 10.21468/SciPostPhys.6.4.041. URL https://scipost.org/10.21468/SciPostPhys.6.4.041.
- A One-Way Quantum Computer. Phys. Rev. Lett., 86(22):5188–5191, May 2001. doi: 10.1103/PhysRevLett.86.5188.
- Measurement-based quantum computation on cluster states. Phys. Rev. A, 68(2):022312, August 2003. doi: 10.1103/PhysRevA.68.022312.
- Richard Jozsa. An introduction to measurement based quantum computation, 2005.
- Measurement-based quantum computation. Nature Phys, 5(1):19–26, January 2009. ISSN 1745-2481. doi: 10.1038/nphys1157.
- Bipartite entanglement and entropic boundary law in lattice spin systems. Physical Review A, 71:022315–022315, February 2005. doi: 10.1103/PhysRevA.71.022315.
- Lower bounds on the non-Clifford resources for quantum computations. Quantum Science and Technology, 5(3):035009–035009, June 2020. doi: 10.1088/2058-9565/ab8963.
- Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326(1):96–192, January 2011. ISSN 0003-4916. doi: 10.1016/j.aop.2010.09.012. URL http://dx.doi.org/10.1016/j.aop.2010.09.012.
- Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158–117–158, 2014. doi: 10.1016/j.aop.2014.06.013.
- Colloquium: Area laws for the entanglement entropy. Review of Modern Physics, 82:277–306–277–306, February 2010. doi: 10.1103/RevModPhys.82.277.
- M. B. Hastings. An area law for one-dimensional quantum systems. Journal of Statistical Mechanics: Theory and Experiment, 2007(08):P08024–P08024–P08024–P08024, August 2007. doi: 10.1088/1742-5468/2007/08/p08024.
- Quantum monte carlo simulations of solids. Rev. Mod. Phys., 73:33–83, Jan 2001. doi: 10.1103/RevModPhys.73.33. URL https://link.aps.org/doi/10.1103/RevModPhys.73.33.
- Quantum Monte Carlo Approaches for Correlated Systems. Cambridge University Press, 2017.
- Solving the quantum many-body problem with artificial neural networks. Science, 355(6325):602–606, February 2017. ISSN 1095-9203. doi: 10.1126/science.aag2302. URL http://dx.doi.org/10.1126/science.aag2302.
- Quantum entanglement in deep learning architectures. Phys. Rev. Lett., 122:065301, Feb 2019. doi: 10.1103/PhysRevLett.122.065301. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.065301.
- Learning efficient decoders for quasichaotic quantum scramblers. Phys. Rev. A, 109(2):022429, February 2024. doi: 10.1103/PhysRevA.109.022429.
- Unscrambling Quantum Information with Clifford Decoders. Phys. Rev. Lett., 132(8):080402, February 2024. doi: 10.1103/PhysRevLett.132.080402.
- Hamiltonians whose Low-Energy States Require Ω(n)Ω𝑛\Omega(n)roman_Ω ( italic_n ) T Gates, 2023.
- H. Bombin and M. A. Martin-Delgado. Topological quantum distillation. Physical Review Letters, 97(18), October 2006. ISSN 1079-7114. doi: 10.1103/physrevlett.97.180501. URL http://dx.doi.org/10.1103/PhysRevLett.97.180501.
- Complexity of quantum impurity problems. Communications in Mathematical Physics, 356(2):451–500, August 2017. ISSN 1432-0916. doi: 10.1007/s00220-017-2976-9. URL http://dx.doi.org/10.1007/s00220-017-2976-9.
- Efficient learning of quantum states prepared with few fermionic non-gaussian gates, 2024.
- Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. Physical Review Letters, 116:250501–250501, June 2016. doi: 10.1103/PhysRevLett.116.250501.
- Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3:181–181, 2019. doi: 10.22331/q-2019-09-02-181.
- Stabilizer tensor networks: universal quantum simulator on a basis of stabilizer states, 2024.
- Learning the stabilizer group of a matrix product state, 2024.
- Nonstabilizerness via matrix product states in the pauli basis, 2024.
- Hierarchical clifford transformations to reduce entanglement in quantum chemistry wave functions. Journal of Chemical Theory and Computation, 19(11):3194–3208, May 2023. ISSN 1549-9626. doi: 10.1021/acs.jctc.3c00228. URL http://dx.doi.org/10.1021/acs.jctc.3c00228.
- Zero and finite temperature quantum simulations powered by quantum magic, 2023.
- Cafqa: A classical simulation bootstrap for variational quantum algorithms, 2023.
- Quantum np - a survey, 2002.
- Computational studies of quantum spin systems. In AIP Conference Proceedings. AIP, 2010. doi: 10.1063/1.3518900. URL http://dx.doi.org/10.1063/1.3518900.
- An efficient and exact noncommutative quantum gibbs sampler, 2023.
- Quantum computing enhanced computational catalysis. Phys. Rev. Res., 3:033055, Jul 2021. doi: 10.1103/PhysRevResearch.3.033055. URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.033055.
- Low-depth quantum simulation of materials. Phys. Rev. X, 8:011044, Mar 2018. doi: 10.1103/PhysRevX.8.011044. URL https://link.aps.org/doi/10.1103/PhysRevX.8.011044.
- Efficient thermalization and universal quantum computing with quantum gibbs samplers, 2024.
- Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410):398–409, 1990. ISSN 01621459. URL http://www.jstor.org/stable/2289776.
- D.A. Levin and Y. Peres. Markov Chains and Mixing Times. MBK. American Mathematical Society, 2017. ISBN 9781470429621.
- Fast-forwarding of hamiltonians and exponentially precise measurements. Nature Communications, 8(1), November 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-01637-7. URL http://dx.doi.org/10.1038/s41467-017-01637-7.
- Magic-induced computational separation in entanglement theory - in Preparation, 2024.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.