Papers
Topics
Authors
Recent
2000 character limit reached

Extended Reality for Enhanced Human-Robot Collaboration: a Human-in-the-Loop Approach (2403.14597v3)

Published 21 Mar 2024 in cs.RO, cs.HC, and cs.LG

Abstract: The rise of automation has provided an opportunity to achieve higher efficiency in manufacturing processes, yet it often compromises the flexibility required to promptly respond to evolving market needs and meet the demand for customization. Human-robot collaboration attempts to tackle these challenges by combining the strength and precision of machines with human ingenuity and perceptual understanding. In this paper, we conceptualize and propose an implementation framework for an autonomous, machine learning-based manipulator that incorporates human-in-the-loop principles and leverages Extended Reality (XR) to facilitate intuitive communication and programming between humans and robots. Furthermore, the conceptual framework foresees human involvement directly in the robot learning process, resulting in higher adaptability and task generalization. The paper highlights key technologies enabling the proposed framework, emphasizing the importance of developing the digital ecosystem as a whole. Additionally, we review the existent implementation approaches of XR in human-robot collaboration, showcasing diverse perspectives and methodologies. The challenges and future outlooks are discussed, delving into the major obstacles and potential research avenues of XR for more natural human-robot interaction and integration in the industrial landscape.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. R. Jahanmahin, S. Masoud, J. Rickli, and A. Djuric, “Human-robot interactions in manufacturing: A survey of human behavior modeling,” Robotics and Computer-Integrated Manufacturing, vol. 78, p. 102404, 2022.
  2. S. Pizzagalli, V. Kuts, and T. Otto, “User-centered design for human-robot collaboration systems,” in IOP Conference Series: Materials Science and Engineering, p. 012011, IOP Publishing, 2021.
  3. M. Dianatfar, J. Latokartano, and M. Lanz, “Review on existing vr/ar solutions in human–robot collaboration,” Procedia CIRP, vol. 97, pp. 407–411, 2021.
  4. R. Suzuki, A. Karim, T. Xia, H. Hedayati, and N. Marquardt, “Augmented reality and robotics: A survey and taxonomy for ar-enhanced human-robot interaction and robotic interfaces,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–33, 2022.
  5. M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?,” in Proceedings of the 2019 CHI conference on human factors in computing systems, pp. 1–15, 2019.
  6. I. Aaltonen, T. Salmi, and I. Marstio, “Refining levels of collaboration to support the design and evaluation of human-robot interaction in the manufacturing industry,” Procedia CIRP, vol. 72, pp. 93–98, 2018.
  7. S. B. i. Badia, P. A. Silva, D. Branco, A. Pinto, C. Carvalho, P. Menezes, J. Almeida, and A. Pilacinski, “Virtual reality for safe testing and development in collaborative robotics: challenges and perspectives,” Electronics, vol. 11, no. 11, p. 1726, 2022.
  8. D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran, “A survey of robot learning strategies for human-robot collaboration in industrial settings,” Robotics and Computer-Integrated Manufacturing, vol. 73, p. 102231, 2022.
  9. H. Fang, S. Ong, and A. Nee, “Interactive robot trajectory planning and simulation using augmented reality,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 227–237, 2012.
  10. N. Lin, Y. Li, K. Tang, Y. Zhu, X. Zhang, R. Wang, J. Ji, X. Chen, and X. Zhang, “Manipulation planning from demonstration via goal-conditioned prior action primitive decomposition and alignment,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1387–1394, 2022.
  11. S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting reinforcement learning with behavior primitives for diverse manipulation tasks,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 7477–7484, IEEE, 2022.
  12. J. Saukkoriipi, T. Heikkilä, J. M. Ahola, T. Seppälä, and P. Isto, “Programming and control for skill-based robots,” Open Engineering, vol. 10, no. 1, pp. 368–376, 2020.
  13. M. Z. Iqbal, E. Mangina, and A. G. Campbell, “Exploring the real-time touchless hand interaction and intelligent agents in augmented reality learning applications,” in 2021 7th International Conference of the Immersive Learning Research Network (iLRN), pp. 1–8, IEEE, 2021.
  14. Y. Feddoul, N. Ragot, F. Duval, V. Havard, D. Baudry, and A. Assila, “Exploring human-machine collaboration in industry: A systematic literature review of digital twin and robotics interfaced with extended reality technologies,” The International Journal of Advanced Manufacturing Technology, vol. 129, no. 5, pp. 1917–1932, 2023.
  15. T. Inamura and Y. Mizuchi, “Sigverse: A cloud-based vr platform for research on multimodal human-robot interaction,” Frontiers in Robotics and AI, vol. 8, p. 549360, 2021.
  16. A. Shojaeinasab, T. Charter, M. Jalayer, M. Khadivi, O. Ogunfowora, N. Raiyani, M. Yaghoubi, and H. Najjaran, “Intelligent manufacturing execution systems: A systematic review,” Journal of Manufacturing Systems, vol. 62, pp. 503–522, 2022.
  17. L. P. Berg and J. M. Vance, “Industry use of virtual reality in product design and manufacturing: a survey,” Virtual reality, vol. 21, pp. 1–17, 2017.
  18. N. Gavish, T. Gutiérrez, S. Webel, J. Rodríguez, M. Peveri, U. Bockholt, and F. Tecchia, “Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks,” Interactive Learning Environments, vol. 23, no. 6, pp. 778–798, 2015.
  19. S. Papanastasiou, N. Kousi, P. Karagiannis, C. Gkournelos, A. Papavasileiou, K. Dimoulas, K. Baris, S. Koukas, G. Michalos, and S. Makris, “Towards seamless human robot collaboration: integrating multimodal interaction,” The International Journal of Advanced Manufacturing Technology, vol. 105, pp. 3881–3897, 2019.
  20. G. Bolano, Y. Fu, A. Roennau, and R. Dillmann, “Deploying multi-modal communication using augmented reality in a shared workspace,” in 2021 18th International Conference on Ubiquitous Robots (UR), pp. 302–307, IEEE, 2021.
  21. C.-H. Chu and Y.-L. Liu, “Augmented reality user interface design and experimental evaluation for human-robot collaborative assembly,” Journal of Manufacturing Systems, vol. 68, pp. 313–324, 2023.
  22. N. Dimitropoulos, T. Togias, N. Zacharaki, G. Michalos, and S. Makris, “Seamless human–robot collaborative assembly using artificial intelligence and wearable devices,” Applied Sciences, vol. 11, no. 12, p. 5699, 2021.
  23. H. Chen, M. C. Leu, and Z. Yin, “Real-time multi-modal human–robot collaboration using gestures and speech,” Journal of Manufacturing Science and Engineering, vol. 144, no. 10, p. 101007, 2022.
  24. D. Mukherjee, K. Gupta, and H. Najjaran, “An ai-powered hierarchical communication framework for robust human-robot collaboration in industrial settings,” in 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1321–1326, IEEE, 2022.
  25. Y. E. Cogurcu and S. Maddock, “Augmented reality safety zone configurations in human-robot collaboration: A user study,” in Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, pp. 360–363, 2023.
  26. K. C. Hoang, W. P. Chan, S. Lay, A. Cosgun, and E. Croft, “Virtual barriers in augmented reality for safe and effective human-robot cooperation in manufacturing,” in 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1174–1180, 2022.
  27. S. H. Choi, K.-B. Park, D. H. Roh, J. Y. Lee, M. Mohammed, Y. Ghasemi, and H. Jeong, “An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation,” Robotics and Computer-Integrated Manufacturing, vol. 73, p. 102258, 2022.
  28. G. Tsamis, G. Chantziaras, D. Giakoumis, I. Kostavelis, A. Kargakos, A. Tsakiris, and D. Tzovaras, “Intuitive and safe interaction in multi-user human robot collaboration environments through augmented reality displays,” in 2021 30th IEEE international conference on robot & human interactive communication (RO-MAN), pp. 520–526, IEEE, 2021.
  29. V. Kuts, J. A. Marvel, M. Aksu, S. L. Pizzagalli, M. Sarkans, Y. Bondarenko, and T. Otto, “Digital twin as industrial robots manipulation validation tool,” Robotics, vol. 11, no. 5, p. 113, 2022.
  30. A. D. Souchet, D. Lourdeaux, A. Pagani, and L. Rebenitsch, “A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload,” Virtual Reality, vol. 27, no. 1, pp. 19–50, 2023.
  31. J. E. Solanes, A. Muñoz, L. Gracia, A. Martí, V. Girbés-Juan, and J. Tornero, “Teleoperation of industrial robot manipulators based on augmented reality,” The International Journal of Advanced Manufacturing Technology, vol. 111, pp. 1077–1097, 2020.
  32. M. K. Zein, M. Al Aawar, D. Asmar, and I. H. Elhajj, “Deep learning and mixed reality to autocomplete teleoperation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4523–4529, IEEE, 2021.
  33. F. Kennel-Maushart, R. Poranne, and S. Coros, “Multi-arm payload manipulation via mixed reality,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 11251–11257, IEEE, 2022.
  34. D. Sun, A. Kiselev, Q. Liao, T. Stoyanov, and A. Loutfi, “A new mixed-reality-based teleoperation system for telepresence and maneuverability enhancement,” IEEE Transactions on Human-Machine Systems, vol. 50, no. 1, pp. 55–67, 2020.
  35. D. Wei, B. Huang, and Q. Li, “Multi-view merging for robot teleoperation with virtual reality,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8537–8544, 2021.
  36. E. Senft, M. Hagenow, K. Welsh, R. Radwin, M. Zinn, M. Gleicher, and B. Mutlu, “Task-level authoring for remote robot teleoperation,” Frontiers in Robotics and AI, vol. 8, p. 707149, 2021.
  37. J. DelPreto, J. I. Lipton, L. Sanneman, A. J. Fay, C. Fourie, C. Choi, and D. Rus, “Helping robots learn: a human-robot master-apprentice model using demonstrations via virtual reality teleoperation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10226–10233, IEEE, 2020.
  38. K. Li, D. Chappell, and N. Rojas, “Immersive demonstrations are the key to imitation learning,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 5071–5077, 2023.
  39. C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. M. Van der Loos, and E. Croft, “Robot programming through augmented trajectories in augmented reality,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1838–1844, IEEE, 2018.
  40. M. B. Luebbers, C. Brooks, C. L. Mueller, D. Szafir, and B. Hayes, “Arc-lfd: Using augmented reality for interactive long-term robot skill maintenance via constrained learning from demonstration,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3794–3800, IEEE, 2021.
  41. M. Gu, E. Croft, and A. Cosgun, “Ar point &click: An interface for setting robot navigation goals,” in International Conference on Social Robotics, pp. 38–49, Springer, 2022.
  42. X. Yan, Y. Jiang, C. Chen, L. Gong, M. Ge, T. Zhang, and X. Li, “A complementary framework for human–robot collaboration with a mixed ar–haptic interface,” IEEE Transactions on Control Systems Technology, 2023.
  43. T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep imitation learning for complex manipulation tasks from virtual reality teleoperation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5628–5635, IEEE, 2018.
  44. J. S. Dyrstad, E. R. Øye, A. Stahl, and J. R. Mathiassen, “Teaching a robot to grasp real fish by imitation learning from a human supervisor in virtual reality,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7185–7192, IEEE, 2018.
  45. J. Arents and M. Greitans, “Smart industrial robot control trends, challenges and opportunities within manufacturing,” Applied Sciences, vol. 12, no. 2, p. 937, 2022.
  46. A. Jackson, B. D. Northcutt, and G. Sukthankar, “The benefits of immersive demonstrations for teaching robots,” in 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 326–334, IEEE, 2019.
  47. H. Nemlekar, N. Dhanaraj, A. Guan, S. K. Gupta, and S. Nikolaidis, “Transfer learning of human preferences for proactive robot assistance in assembly tasks,” in Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, pp. 575–583, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.