Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

An On-Shell Derivation of the Soft Effective Action in Abelian Gauge Theories (2403.14502v2)

Published 21 Mar 2024 in hep-th and hep-ph

Abstract: We derive the soft effective action in $(d+2)$-dimensional abelian gauge theories from the on-shell action obeying Neumann boundary conditions at timelike and null infinity and Dirichlet boundary conditions at spatial infinity. This allows us to identify the on-shell degrees of freedom on the boundary with the soft modes living on the celestial sphere. Following the work of Donnelly and Wall, this suggests that we can interpret soft modes as entanglement edge modes on the celestial sphere and study entanglement properties of soft modes in abelian gauge theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].
  2. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
  3. S. Weinberg, “Infrared photons and gravitons,” Physical Review 140 no. 2B, (1965) B516–B524.
  4. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
  5. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
  6. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
  7. S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81 no. 12, (2021) 1062, arXiv:2108.04801 [hep-th].
  8. A.-M. Raclariu, “Lectures on Celestial Holography,” arXiv:2107.02075 [hep-th].
  9. F. Berends and W. Giele, “Multiple soft gluon radiation in parton processes,” Nuclear Physics B 313 no. 3, (1989) 595–633. https://www.sciencedirect.com/science/article/pii/0550321389903982.
  10. A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” JHEP 07 (2014) 151, arXiv:1308.0589 [hep-th].
  11. T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].
  12. T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,” JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].
  13. M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” JHEP 07 (2015) 115, arXiv:1505.05346 [hep-th].
  14. D. Kapec, V. Lysov, and A. Strominger, “Asymptotic Symmetries of Massless QED in Even Dimensions,” Adv. Theor. Math. Phys. 21 (2017) 1747–1767, arXiv:1412.2763 [hep-th].
  15. D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” Adv. Theor. Math. Phys. 21 (2017) 1769–1785, arXiv:1506.02906 [hep-th].
  16. A. Nande, M. Pate, and A. Strominger, “Soft Factorization in QED from 2D Kac-Moody Symmetry,” JHEP 02 (2018) 079, arXiv:1705.00608 [hep-th].
  17. T. He and P. Mitra, “Asymptotic symmetries and Weinberg’s soft photon theorem in Minkd+2𝑑2{}_{d+2}start_FLOATSUBSCRIPT italic_d + 2 end_FLOATSUBSCRIPT,” JHEP 10 (2019) 213, arXiv:1903.02608 [hep-th].
  18. T. He and P. Mitra, “Covariant Phase Space and Soft Factorization in Non-Abelian Gauge Theories,” JHEP 03 (2021) 015, arXiv:2009.14334 [hep-th].
  19. T. He and P. Mitra, “Asymptotic Structure of Higher Dimensional Yang-Mills Theory,” arXiv:2306.04571 [hep-th].
  20. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “On infinite symmetry algebras in Yang-Mills theory,” JHEP 12 (2023) 009, arXiv:2306.02373 [hep-th].
  21. F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” arXiv:1404.4091 [hep-th].
  22. G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG2010 (2010) 010, arXiv:1102.4632 [gr-qc].
  23. D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮𝒮\mathcal{S}caligraphic_S-matrix,” JHEP 08 (2014) 058, arXiv:1406.3312 [hep-th].
  24. D. Kapec and P. Mitra, “Shadows and soft exchange in celestial CFT,” Phys. Rev. D 105 no. 2, (2022) 026009, arXiv:2109.00073 [hep-th].
  25. E. Himwich, S. A. Narayanan, M. Pate, N. Paul, and A. Strominger, “The Soft 𝒮𝒮\mathcal{S}caligraphic_S-Matrix in Gravity,” JHEP 09 (2020) 129, arXiv:2005.13433 [hep-th].
  26. N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, arXiv:2012.04208 [hep-th].
  27. L. Magnea, “Non-abelian infrared divergences on the celestial sphere,” JHEP 05 (2021) 282, arXiv:2104.10254 [hep-th].
  28. H. A. González and F. Rojas, “The structure of IR divergences in celestial gluon amplitudes,” JHEP 2021 no. 06, (2021) 171, arXiv:2104.12979 [hep-th].
  29. N. Kalyanapuram, “Infrared and Holographic Aspects of the S𝑆Sitalic_S-Matrix in Gauge Theory and Gravity,” arXiv:2107.06660 [hep-th].
  30. D. Yennie, S. Frautschi, and H. Suura, “The infrared divergence phenomena and high-energy processes,” Annals of Physics 13 no. 3, (1961) 379–452. https://www.sciencedirect.com/science/article/pii/0003491661901518.
  31. W. Donnelly, “Decomposition of entanglement entropy in lattice gauge theory,” Phys. Rev. D 85 (2012) 085004, arXiv:1109.0036 [hep-th].
  32. D. N. Kabat, “Black hole entropy and entropy of entanglement,” Nucl. Phys. B 453 (1995) 281–299, arXiv:hep-th/9503016.
  33. W. Donnelly and A. C. Wall, “Entanglement entropy of electromagnetic edge modes,” Phys. Rev. Lett. 114 no. 11, (2015) 111603, arXiv:1412.1895 [hep-th].
  34. W. Donnelly and A. C. Wall, “Geometric entropy and edge modes of the electromagnetic field,” Phys. Rev. D 94 no. 10, (2016) 104053, arXiv:1506.05792 [hep-th].
  35. H. Z. Chen, R. C. Myers, and A.-M. Raclariu, “Entanglement, Soft Modes, and Celestial Holography,” arXiv:2308.12341 [hep-th].
  36. E. Verlinde and K. M. Zurek, “Modular fluctuations from shockwave geometries,” Phys. Rev. D 106 no. 10, (2022) 106011, arXiv:2208.01059 [hep-th].
  37. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 6, 2005.
  38. K. Costello and N. M. Paquette, “Celestial holography meets twisted holography: 4d amplitudes from chiral correlators,” JHEP 10 (2022) 193, arXiv:2201.02595 [hep-th].
  39. K. Costello, N. M. Paquette, and A. Sharma, “Top-Down Holography in an Asymptotically Flat Spacetime,” Phys. Rev. Lett. 130 no. 6, (2023) 061602, arXiv:2208.14233 [hep-th].
  40. K. Costello, N. M. Paquette, and A. Sharma, “Burns space and holography,” JHEP 10 (2023) 174, arXiv:2306.00940 [hep-th].
  41. D. Kapec and P. Mitra, “A d𝑑ditalic_d-Dimensional Stress Tensor for Minkd+2𝑑2{}_{d+2}start_FLOATSUBSCRIPT italic_d + 2 end_FLOATSUBSCRIPT Gravity,” JHEP 05 (2018) 186, arXiv:1711.04371 [hep-th].
  42. K. Nguyen and J. Salzer, “Celestial IR divergences and the effective action of supertranslation modes,” JHEP 09 (2021) 144, arXiv:2105.10526 [hep-th].
  43. H. Hirai and S. Sugishita, “IR finite S-matrix by gauge invariant dressed states,” JHEP 02 (2021) 025, arXiv:2009.11716 [hep-th].
  44. C. Delisle, J. Wilson-Gerow, and P. Stamp, “Soft Theorems from Boundary Terms in the Classical Point Particle Currents,” JHEP 03 (2021) 290, arXiv:2012.13356 [hep-th].
  45. H. Hirai, Towards Infrared Finite S-matrix in Quantum Field Theory. PhD thesis, Aff1= Natural Science Education, National Institute of Technology, Kisarazu College, Kisarazu, Japan, GRID:grid.459759.3, Osaka U., Inst. Phys., 2021.
  46. T. He and P. Mitra, “Asymptotic symmetries in (d + 2)-dimensional gauge theories,” JHEP 10 (2019) 277, arXiv:1903.03607 [hep-th].
  47. E. Verlinde and K. M. Zurek, “Spacetime Fluctuations in AdS/CFT,” JHEP 04 (2020) 209, arXiv:1911.02018 [hep-th].
  48. E. P. Verlinde and K. M. Zurek, “Observational signatures of quantum gravity in interferometers,” Phys. Lett. B 822 (2021) 136663, arXiv:1902.08207 [gr-qc].
  49. J. D. Jackson, Classical Electrodynamics. Wiley, 1998.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: