Weak Carleson conditions in uniformly rectifiable metric spaces: the WCD and alpha numbers (2403.14479v3)
Abstract: We investigate characterizations of uniformly rectifiable (UR) metric spaces by so-called weak Carleson conditions for flatness coefficients which measure the extent to which Hausdorff measure on the metric space differs from Hausdorff measure on a normed space. First, we show that UR metric spaces satisfy David and Semmes's weak constant density condition, a quantitative regularity property which implies most balls in the space support a measure with nearly constant density in a neighborhood of scales and locations. Second, we introduce a metric space variant of Tolsa's alpha numbers that measure a local normalized $L_1$ mass transport cost between the space's Hausdorff measure and Hausdorff measure on a normed space. We show that a weak Carleson condition for these alpha numbers gives a characterization of metric uniform rectifiability. We derive both results as corollaries of a more general abstract result which gives a tool for transferring weak Carleson conditions to spaces with very big pieces of spaces with a given weak Carleson condition.
- The weak lower density condition and uniform rectifiability. Ann. Fenn. Math., 47(2):791–819, 2022.
- A quantitative metric differentiation theorem. Proc. Amer. Math. Soc., 142(4):1351–1357, 2014.
- David Bate. On 1-regular and 1-uniform metric measure spaces. Youtube, 2023. https://www.youtube.com/watch?v=9zXjfKeWGv4&t=2096s.
- Uniformly rectifiable metric spaces: Lipschitz images, bi-lateral weak geometric lemma and corona decompositions. arXiv preprint, arXiv:2306.12933, 2023.
- Square functions and uniform rectifiability. Trans. Amer. Math. Soc., 368(9):6063–6102, 2016.
- M. Christ. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math., 60/61(2):601–628, 1990.
- On uniform measures in the Heisenberg group. Adv. Math., 363:106980, 42, 2020.
- Guy David. Morceaux de graphes lipschitziens et intégrales singulières sur une surface. Rev. Mat. Iberoamericana, 4(1):73–114, 1988.
- Camillo De Lellis. Rectifiable sets, densities and tangent measures. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
- Singular integrals and rectifiable sets in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT: Beyond Lipschitz graphs. Astérisque, (193):152, 1991.
- Analysis of and on uniformly rectifiable sets, volume 38 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1993.
- On various carleson-type geometric lemmas and uniform rectifiability in metric spaces. arXiv preprint, arXiv:2310.10519, 2023.
- Immo Hahlomaa. Menger curvature and Lipschitz parametrizations in metric spaces. Fund. Math., 185(2):143–169, 2005.
- T. Hytönen and H. Martikainen. Non-homogeneous Tb𝑇𝑏{T}bitalic_T italic_b theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal., 22(4):1071–1107, 2012.
- Bernd Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc., 121(1):113–123, 1994.
- Besicovitch-type properties of measures and submanifolds. J. Reine Angew. Math., 379:115–151, 1987.
- Uniformly distributed measures in Euclidean spaces. Math. Scand., 90(1):152–160, 2002.
- Gilad Lerman. Quantifying curvelike structures of measures by using l2subscript𝑙2l_{2}italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Jones quantities. Comm. Pure Appl. Math., 56(9):1294–1365, 2003.
- Andrew Lorent. Rectifiability of measures with locally uniform cube density. Proc. London Math. Soc. (3), 86(1):153–249, 2003.
- Andrea Merlo. Geometry of 1-codimensional measures in Heisenberg groups. Invent. Math., 227(1):27–148, 2022.
- A. Dali Nimer. A sharp bound on the Hausdorff dimension of the singular set of a uniform measure. Calc. Var. Partial Differential Equations, 56(4):Paper No. 111, 31, 2017.
- A. Dali Nimer. Uniformly distributed measures have big pieces of Lipschitz graphs locally. Ann. Acad. Sci. Fenn. Math., 44(1):389–405, 2019.
- A. Dali Nimer. Conical 3-uniform measures: a family of new examples and characterizations. J. Differential Geom., 121(1):57–99, 2022.
- Kate Okikiolu. Characterization of subsets of rectifiable curves in 𝐑nsuperscript𝐑𝑛\mathbf{R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Journal of the London Mathematical Society, s2-46(2):336–348, 1992.
- David Preiss. Geometry of measures in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT: distribution, rectifiability, and densities. Ann. of Math. (2), 125(3):537–643, 1987.
- Raanan Schul. Ahlfors-regular curves in metric spaces. Ann. Acad. Sci. Fenn. Math., 32(2):437–460, 2007.
- Raanan Schul. Bi-Lipschitz decomposition of Lipschitz functions into a metric space. Rev. Mat. Iberoam., 25(2):521–531, 2009.
- Xavier Tolsa. Mass transport and uniform rectifiability. Geom. Funct. Anal., 22(2):478–527, 2012.
- Xavier Tolsa. Uniform measures and uniform rectifiability. J. Lond. Math. Soc. (2), 92(1):1–18, 2015.
- Rectifiability via a square function and Preiss’ theorem. Int. Math. Res. Not. IMRN, (13):4638–4662, 2015.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.