Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analytic expression of the DOS for a new model of 1d-potential and its random perturbation (2403.14453v1)

Published 21 Mar 2024 in math-ph, math.MP, and quant-ph

Abstract: In this article we present comparisons between the spectrum of a one-dimensional Schr\"odinger operator for a particular periodic potential and for its restriction to a finite number of sites. We deduce from this finite, but large, number of sites, the Integrated Density of States (IDS) associated to the Hamiltonian operator whose derivate is the DOS. The exact formula for the IDS is given and the expression of the DOS is analytical. All our calculations are done on the particular periodic Airy-potential, which is a new case for which one has an analytical expression of the DOS. It is a continuous, periodic potential, piecewise affine. As a periodic operator, the spectrum is a band spectrum.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: