Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Uniqueness of static vacuum asymptotically flat black holes and equipotential photon surfaces in $n+1$ dimensions à la Robinson (2403.14422v2)

Published 21 Mar 2024 in math.DG and gr-qc

Abstract: In this paper, we combine and generalize to higher dimensions the approaches to proving the uniqueness of connected (3+1)-dimensional static vacuum asymptotically flat black hole spacetimes by M\"uller zum Hagen--Robinson--Seifert and by Robinson. Applying these techniques, we prove and/or reprove geometric inequalities for connected (n + 1)-dimensional static vacuum asymptotically flat spacetimes with either black hole or equipotential photon surface or specifically photon sphere inner boundary. In particular, assuming a natural upper bound on the total scalar curvature of the boundary, we recover and extend the well-known uniqueness results for such black hole and equipotential photon surface spacetimes. We also relate our results and proofs to existing results, in particular to those by Agostiniani--Mazzieri and by Nozawa--Shiromizu--Izumi--Yamada.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.