Papers
Topics
Authors
Recent
2000 character limit reached

Hint of dark matter-dark energy interaction in the current cosmological data? (2403.14247v3)

Published 21 Mar 2024 in astro-ph.CO, gr-qc, hep-ph, and hep-th

Abstract: We present new constraints on an interacting dark matter\textendash dark energy scenario motivated by string compactification, where a scalar field adiabatically tracks the minimum of an effective potential sourced by dark matter density. In this study, we focus on the Chameleon dark energy model and, for the first time, numerically solve the Klein-Gordon equation using a shooting algorithm to determine precise initial conditions, improving upon earlier works that relied on approximations. We perform a comprehensive MCMC analysis using a combination of datasets including Planck, BAO (SDSS and DESI DR2), Pantheon+, and SH$0$ES. Our results show a clear preference for a non-zero dark sector coupling, overcoming previous upper-bound-only constraints due to improved numerical accuracy and data precision. This preference is primarily driven by the late-time ISW effect. Notably, the inclusion of DESI DR2 and SH$_0$ES data increases the inferred interaction strength to $\beta \sim 0.3$ (68\% C.L.) and yields strong statistical support over $\Lambda$CDM, with $\Delta\chi2{\rm min} = -4.75, -6.41$ and $\Delta{\rm AIC} = -0.75, -2.41$ respectively. If future data further supports a fifth force in the dark sector, non-linear structure formation could offer additional observational tests of such long-range interactions. This work also remains consistent with recent DESI observations of evolving dark energy, with the effective dark energy equation of state crossing the phantom divide around redshift $z \sim 0.5$, a feature that emerges naturally in our framework due to the scalar field dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. N. Aghanim and et. al., Astronomy & Astrophysics 641, A6 (2020).
  2. I. Sevilla-Noarbe and et. al., The Astrophysical Journal Supplement Series 254, 24 (2021).
  3. R. Dalal et al.,   (2023), arXiv:2304.00701 [astro-ph.CO] .
  4. W. L. Freedman, Nature Astronomy 1, 0121 (2017).
  5. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
  6. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).
  7. A. R. Liddle and R. J. Scherrer, Phys. Rev. D 59, 023509 (1998).
  8. C. Wetterich, Nuclear Physics B 302, 668 (1988).
  9. C. Wetterich,   (1994), arXiv:hep-th/9408025 [hep-th] .
  10. T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev. Lett. 64, 123 (1990).
  11. J. A. Casas, J. Garcia-Bellido, and M. Quiros, Classical and Quantum Gravity 9, 1371–1384 (1992).
  12. G. W. Anderson and S. M. Carroll, in COSMO-97 (WORLD SCIENTIFIC, 1998).
  13. L. Amendola, Phys. Rev. D 62, 043511 (2000).
  14. L. Amendola and D. Tocchini-Valentini, Phys. Rev. D 64, 043509 (2001).
  15. R. Bean, Phys. Rev. D 64, 123516 (2001).
  16. T. Damour, F. Piazza, and G. Veneziano, Phys. Rev. Lett. 89, 081601 (2002).
  17. D. Comelli, M. Pietroni, and A. Riotto, Physics Letters B 571, 115–120 (2003).
  18. L. Amendola and C. Quercellini, Phys. Rev. D 68, 023514 (2003).
  19. U. França and R. Rosenfeld, Phys. Rev. D 69, 063517 (2004).
  20. J. Khoury and A. Weltman, Physical Review Letters 93, 10.1103/physrevlett.93.171104 (2004a).
  21. J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004b).
  22. S. S. Gubser and J. Khoury, Physical Review D 70, 10.1103/physrevd.70.104001 (2004).
  23. G. R. Farrar and P. J. E. Peebles, The Astrophysical Journal 604, 1–11 (2004).
  24. D. B. Kaplan, A. E. Nelson, and N. Weiner, Phys. Rev. Lett. 93, 091801 (2004).
  25. G. Olivares, F. Atrio-Barandela, and D. Pavón, Physical Review D 71, 10.1103/physrevd.71.063523 (2005).
  26. H. Wei and R.-G. Cai, Phys. Rev. D 71, 043504 (2005).
  27. R. D. Peccei, Physical Review D 71, 10.1103/physrevd.71.023527 (2005).
  28. R. Fardon, A. E. Nelson, and N. Weiner, Journal of High Energy Physics 2006, 042–042 (2006).
  29. H.-C. Zhang,   (2022), arXiv:2210.10204 [gr-qc] .
  30. P. Brax, C. P. Burgess, and F. Quevedo, JCAP 03, 015, arXiv:2310.02092 [hep-th] .
  31. C. Käding, M. Pitschmann, and C. Voith, Eur. Phys. J. C 83, 767 (2023), arXiv:2306.10896 [hep-ph] .
  32. A. Singh, A. Pradhan, and A. Beesham, New Astron. 100, 101995 (2023).
  33. C. Burgess and F. Quevedo, Journal of Cosmology and Astroparticle Physics 2022 (04), 007.
  34. P. Brax, C. P. Burgess, and F. Quevedo, JCAP 08, 011, arXiv:2212.14870 [hep-ph] .
  35. G. Huey and B. D. Wandelt, Physical Review D 74, 10.1103/physrevd.74.023519 (2006).
  36. H. Štefančić, The European Physical Journal C 36, 523–527 (2004).
  37. S. Das, P. S. Corasaniti, and J. Khoury, Phys. Rev. D 73, 083509 (2006).
  38. T. Damour and A. Polyakov, Nuclear Physics B 423, 532–558 (1994).
  39. D. Boriero, S. Das, and Y. Y. Wong, Journal of Cosmology and Astroparticle Physics 2015 (07), 033.
  40. M. Kesden and M. Kamionkowski, Physical Review D 74, 10.1103/physrevd.74.083007 (2006).
  41. J. A. Keselman, A. Nusser, and P. J. E. Peebles, Physical Review D 80, 10.1103/physrevd.80.063517 (2009).
  42. J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004c).
  43. E. J. Copeland, M. Sami, and S. Tsujikawa, International Journal of Modern Physics D 15, 1753–1935 (2006).
  44. J. Wang, L. Hui, and J. Khoury, Physical Review Letters 109, 10.1103/physrevlett.109.241301 (2012a).
  45. C. M. Will, Living Reviews in Relativity 4, 10.12942/lrr-2001-4 (2001).
  46. D. J. Kapner and et. al., Phys. Rev. Lett. 98, 021101 (2007).
  47. J. Wang, L. Hui, and J. Khoury, Phys. Rev. Lett. 109, 241301 (2012b).
  48. S. Alam and et. al., Phys. Rev. D 103, 083533 (2021).
  49. G. D’Amico, L. Senatore, and P. Zhang, Journal of Cosmology and Astroparticle Physics 2021 (01), 006.
  50. T. M. C. Abbott, F. B. Abdalla, and et. al. (DES Collaboration), Phys. Rev. D 99, 123505 (2019).
  51. P. S. Corasaniti, Phys. Rev. D 78, 083538 (2008).
  52. T. Abbott and et. al., Physical Review D 98, 10.1103/physrevd.98.043526 (2018).
  53. J. Lesgourgues,   (2011), arXiv:1104.2932 [astro-ph.IM] .
  54. D. Blas, J. Lesgourgues, and T. Tram, Journal of Cosmology and Astroparticle Physics 2011 (07), 034.
  55. S. Alam and et. al., Monthly Notices of the Royal Astronomical Society 470, 2617–2652 (2017).
  56. F. Beutler and et. al., Monthly Notices of the Royal Astronomical Society 416, 3017–3032 (2011).
  57. A. J. Ross and et. al., Monthly Notices of the Royal Astronomical Society 449, 835–847 (2015).
  58. D. Brout and et. al., The Astrophysical Journal 938, 110 (2022).
  59. A. G. Riess and et. al., The Astrophysical Journal Letters 934, L7 (2022).
  60. T. Brinckmann and J. Lesgourgues,   (2018), arXiv:1804.07261 [astro-ph.CO] .
  61. A. Lewis, A. Challinor, and A. Lasenby, The Astrophysical Journal 538, 473 (2000).
  62. A. Gelman and D. B. Rubin, Statistical Science 7, 457 (1992).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 7 tweets with 11 likes about this paper.