Cosmology with Persistent Homology: a Fisher Forecast (2403.13985v2)
Abstract: Persistent homology naturally addresses the multi-scale topological characteristics of the large-scale structure as a distribution of clusters, loops, and voids. We apply this tool to the dark matter halo catalogs from the Quijote simulations, and build a summary statistic for comparison with the joint power spectrum and bispectrum statistic regarding their information content on cosmological parameters and primordial non-Gaussianity. Through a Fisher analysis, we find that constraints from persistent homology are tighter for 8 out of the 10 parameters by margins of 13-50%. The complementarity of the two statistics breaks parameter degeneracies, allowing for a further gain in constraining power when combined. We run a series of consistency checks to consolidate our results, and conclude that our findings motivate incorporating persistent homology into inference pipelines for cosmological survey data.
- G. D’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang, F. Beutler, and H. Gil-Marín, “The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure,” JCAP 05 (2020) 005, arXiv:1909.05271 [astro-ph.CO].
- M. M. Ivanov, M. Simonović, and M. Zaldarriaga, “Cosmological Parameters from the BOSS Galaxy Power Spectrum,” JCAP 05 (2020) 042, arXiv:1909.05277 [astro-ph.CO].
- M. M. Ivanov, M. Simonović, and M. Zaldarriaga, “Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data,” Phys. Rev. D 101 no. 8, (2020) 083504, arXiv:1912.08208 [astro-ph.CO].
- T. Colas, G. D’amico, L. Senatore, P. Zhang, and F. Beutler, “Efficient Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure,” JCAP 06 (2020) 001, arXiv:1909.07951 [astro-ph.CO].
- P. Zhang, G. D’Amico, L. Senatore, C. Zhao, and Y. Cai, “BOSS Correlation Function analysis from the Effective Field Theory of Large-Scale Structure,” JCAP 02 no. 02, (2022) 036, arXiv:2110.07539 [astro-ph.CO].
- G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, “Constraints on Single-Field Inflation from the BOSS Galaxy Survey,” arXiv:2201.07238 [astro-ph.CO].
- G. D’Amico, M. Lewandowski, L. Senatore, and P. Zhang, “Limits on primordial non-Gaussianities from BOSS galaxy-clustering data,” arXiv:2201.11518 [astro-ph.CO].
- G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, “Constraints on multifield inflation from the BOSS galaxy survey,” Phys. Rev. D 106 no. 4, (2022) 043506, arXiv:2204.01781 [astro-ph.CO].
- G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore, and P. Zhang, “The BOSS bispectrum analysis at one loop from the Effective Field Theory of Large-Scale Structure,” arXiv:2206.08327 [astro-ph.CO].
- M. M. Ivanov, O. H. E. Philcox, G. Cabass, T. Nishimichi, M. Simonović, and M. Zaldarriaga, “Cosmology with the galaxy bispectrum multipoles: Optimal estimation and application to BOSS data,” Phys. Rev. D 107 no. 8, (2023) 083515, arXiv:2302.04414 [astro-ph.CO].
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].
- Planck Collaboration, Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” arXiv:1807.06211 [astro-ph.CO].
- Planck Collaboration, Y. Akrami et al., “Planck 2018 results. IX. Constraints on primordial non-Gaussianity,” Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO].
- D. Baumann and D. Green, “The Power of Locality: Primordial Non-Gaussianity at the Map Level,” arXiv:2112.14645 [astro-ph.CO].
- G. Cabass, M. Simonović, and M. Zaldarriaga, “Cosmological Information in Perturbative Forward Modeling,” arXiv:2307.04706 [astro-ph.CO].
- J. Jasche and B. D. Wandelt, “Bayesian physical reconstruction of initial conditions from large scale structure surveys,” Mon. Not. Roy. Astron. Soc. 432 (2013) 894, arXiv:1203.3639 [astro-ph.CO].
- H. Wang, H. J. Mo, X. Yang, and F. C. v. d. Bosch, “Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs,” Astrophys. J. 772 (2013) 63, arXiv:1301.1348 [astro-ph.CO].
- M. Ata, F.-S. Kitaura, and V. Müller, “Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers,” Mon. Not. Roy. Astron. Soc. 446 no. 4, (2015) 4250–4259, arXiv:1408.2566 [astro-ph.CO].
- M. Schmittfull, M. Simonović, V. Assassi, and M. Zaldarriaga, “Modeling Biased Tracers at the Field Level,” Phys. Rev. D 100 no. 4, (2019) 043514, arXiv:1811.10640 [astro-ph.CO].
- F. Elsner, F. Schmidt, J. Jasche, G. Lavaux, and N.-M. Nguyen, “Cosmology inference from a biased density field using the EFT-based likelihood,” JCAP 01 (2020) 029, arXiv:1906.07143 [astro-ph.CO].
- G. Cabass and F. Schmidt, “The EFT Likelihood for Large-Scale Structure,” JCAP 04 (2020) 042, arXiv:1909.04022 [astro-ph.CO].
- G. Cabass and F. Schmidt, “The Likelihood for LSS: Stochasticity of Bias Coefficients at All Orders,” JCAP 07 (2020) 051, arXiv:2004.00617 [astro-ph.CO].
- F. Schmidt, G. Cabass, J. Jasche, and G. Lavaux, “Unbiased Cosmology Inference from Biased Tracers using the EFT Likelihood,” JCAP 11 (2020) 008, arXiv:2004.06707 [astro-ph.CO].
- G. Cabass, “The EFT Likelihood for Large-Scale Structure in Redshift Space,” JCAP 01 (2021) 067, arXiv:2007.14988 [astro-ph.CO].
- M. Schmittfull, M. Simonović, M. M. Ivanov, O. H. E. Philcox, and M. Zaldarriaga, “Modeling Galaxies in Redshift Space at the Field Level,” JCAP 05 (2021) 059, arXiv:2012.03334 [astro-ph.CO].
- A. Andrews, J. Jasche, G. Lavaux, and F. Schmidt, “Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys,” Mon. Not. Roy. Astron. Soc. 520 no. 4, (2023) 5746–5763, arXiv:2203.08838 [astro-ph.CO].
- A. E. Bayer, U. Seljak, and C. Modi, “Field-Level Inference with Microcanonical Langevin Monte Carlo,” in 40th International Conference on Machine Learning. 7, 2023. arXiv:2307.09504 [astro-ph.CO].
- J. Robnik, G. B. De Luca, E. Silverstein, and U. Seljak, “Microcanonical Hamiltonian Monte Carlo,” arXiv:2212.08549 [stat.CO].
- J. Robnik and U. Seljak, “Microcanonical Langevin Monte Carlo,” arXiv:2303.18221 [hep-lat].
- D. Greenberg, M. Nonnenmacher, and J. Macke, “Automatic posterior transformation for likelihood-free inference,” in International Conference on Machine Learning, pp. 2404–2414, PMLR. 2019.
- G. Papamakarios, D. Sterratt, and I. Murray, “Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows,” in The 22nd International Conference on Artificial Intelligence and Statistics, pp. 837–848, PMLR. 2019.
- J. Hermans, V. Begy, and G. Louppe, “Likelihood-free mcmc with amortized approximate ratio estimators,” in International Conference on Machine Learning, pp. 4239–4248, PMLR. 2020.
- B. K. Miller, A. Cole, P. Forré, G. Louppe, and C. Weniger, “Truncated Marginal Neural Ratio Estimation,” arXiv:2107.01214 [stat.ML].
- N. Anau Montel, J. Alvey, and C. Weniger, “Scalable inference with Autoregressive Neural Ratio Estimation,” arXiv:2308.08597 [astro-ph.IM].
- L. Heinrich, S. Mishra-Sharma, C. Pollard, and P. Windischhofer, “Hierarchical Neural Simulation-Based Inference Over Event Ensembles,” arXiv:2306.12584 [stat.ML].
- K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-based inference,” Proceedings of the National Academy of Sciences 117 no. 48, (2020) 30055–30062.
- J. Alsing, T. Charnock, S. Feeney, and B. Wandelt, “Fast likelihood-free cosmology with neural density estimators and active learning,” Mon. Not. Roy. Astron. Soc. 488 no. 3, (2019) 4440–4458, arXiv:1903.00007 [astro-ph.CO].
- F. Villaescusa-Navarro et al., “Robust marginalization of baryonic effects for cosmological inference at the field level,” arXiv:2109.10360 [astro-ph.CO].
- F. Villaescusa-Navarro et al., “Multifield Cosmology with Artificial Intelligence,” arXiv:2109.09747 [astro-ph.CO].
- T. L. Makinen, T. Charnock, J. Alsing, and B. D. Wandelt, “Lossless, scalable implicit likelihood inference for cosmological fields,” JCAP 11 no. 11, (2021) 049, arXiv:2107.07405 [astro-ph.CO].
- A. Cole, B. K. Miller, S. J. Witte, M. X. Cai, M. W. Grootes, F. Nattino, and C. Weniger, “Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation,” arXiv:2111.08030 [astro-ph.CO].
- P. Lemos, M. Cranmer, M. Abidi, C. Hahn, M. Eickenberg, E. Massara, D. Yallup, and S. Ho, “Robust simulation-based inference in cosmology with Bayesian neural networks,” Mach. Learn. Sci. Tech. 4 no. 1, (2023) 01LT01, arXiv:2207.08435 [astro-ph.CO].
- C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E. Massara, C. Modi, A. Moradinezhad Dizgah, B. R.-S. Blancard, and M. M. Abidi, “SimBIG: mock challenge for a forward modeling approach to galaxy clustering,” JCAP 04 (2023) 010, arXiv:2211.00660 [astro-ph.CO].
- B. Tucci and F. Schmidt, “EFTofLSS meets simulation-based inference: σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT from biased tracers,” arXiv:2310.03741 [astro-ph.CO].
- F. List, N. Anau Montel, and C. Weniger, “Bayesian Simulation-based Inference for Cosmological Initial Conditions,” in 37th Conference on Neural Information Processing Systems. 10, 2023. arXiv:2310.19910 [astro-ph.CO].
- C. Modi, S. Pandey, M. Ho, C. Hahn, B. Régaldo-Saint Blancard, and B. Wandelt, “Sensitivity Analysis of Simulation-Based Inference for Galaxy Clustering,” arXiv:2309.15071 [astro-ph.CO].
- C. Modi and O. H. E. Philcox, “Hybrid SBI or How I Learned to Stop Worrying and Learn the Likelihood,” arXiv:2309.10270 [astro-ph.CO].
- J. Alsing and B. Wandelt, “Nuisance hardened data compression for fast likelihood-free inference,” Mon. Not. Roy. Astron. Soc. 488 no. 4, (2019) 5093–5103, arXiv:1903.01473 [astro-ph.CO].
- M. C. Neyrinck, I. Szapudi, and A. S. Szalay, “Rejuvenating the matter power spectrum: restoring information with a logarithmic density mapping,” Astrophys. J. Lett. 698 (2009) L90–L93, arXiv:0903.4693 [astro-ph.CO].
- M. White, “A marked correlation function for constraining modified gravity models,” JCAP 11 (2016) 057, arXiv:1609.08632 [astro-ph.CO].
- S. Satpathy, R. A. C. Croft, S. Ho, and B. Li, “Measurement of marked correlation functions in SDSS-III Baryon Oscillation Spectroscopic Survey using LOWZ galaxies in Data Release 12,” Mon. Not. Roy. Astron. Soc. 484 no. 2, (2019) 2148–2165, arXiv:1901.01447 [astro-ph.CO].
- A. Aviles, K. Koyama, J. L. Cervantes-Cota, H. A. Winther, and B. Li, “Marked correlation functions in perturbation theory,” JCAP 01 (2020) 006, arXiv:1911.06362 [astro-ph.CO].
- E. Massara, F. Villaescusa-Navarro, S. Ho, N. Dalal, and D. N. Spergel, “Using the Marked Power Spectrum to Detect the Signature of Neutrinos in Large-Scale Structure,” Phys. Rev. Lett. 126 no. 1, (2021) 011301, arXiv:2001.11024 [astro-ph.CO].
- O. H. E. Philcox, A. Aviles, and E. Massara, “Modeling the Marked Spectrum of Matter and Biased Tracers in Real- and Redshift-Space,” JCAP 03 (2021) 038, arXiv:2010.05914 [astro-ph.CO].
- O. H. E. Philcox, E. Massara, and D. N. Spergel, “What does the marked power spectrum measure? Insights from perturbation theory,” Phys. Rev. D 102 no. 4, (2020) 043516, arXiv:2006.10055 [astro-ph.CO].
- E. Massara, F. Villaescusa-Navarro, C. Hahn, M. M. Abidi, M. Eickenberg, S. Ho, P. Lemos, A. Moradinezhad Dizgah, and B. R.-S. Blancard, “Cosmological Information in the Marked Power Spectrum of the Galaxy Field,” Astrophys. J. 951 no. 1, (2023) 70, arXiv:2206.01709 [astro-ph.CO].
- M. Schmittfull, T. Baldauf, and U. Seljak, “Near optimal bispectrum estimators for large-scale structure,” Phys. Rev. D 91 no. 4, (2015) 043530, arXiv:1411.6595 [astro-ph.CO].
- A. Moradinezhad Dizgah, H. Lee, M. Schmittfull, and C. Dvorkin, “Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra,” JCAP 04 (2020) 011, arXiv:1911.05763 [astro-ph.CO].
- J.-P. Dai, L. Verde, and J.-Q. Xia, “What Can We Learn by Combining the Skew Spectrum and the Power Spectrum?,” JCAP 08 (2020) 007, arXiv:2002.09904 [astro-ph.CO].
- M. Schmittfull and A. Moradinezhad Dizgah, “Galaxy skew-spectra in redshift-space,” JCAP 03 (2021) 020, arXiv:2010.14267 [astro-ph.CO].
- P. Chakraborty, S.-F. Chen, and C. Dvorkin, “Skewing the CMB×LSS: a fast method for bispectrum analysis,” JCAP 07 no. 07, (2022) 038, arXiv:2202.11724 [astro-ph.CO].
- J. Hou, A. Moradinezhad Dizgah, C. Hahn, and E. Massara, “Cosmological information in skew spectra of biased tracers in redshift space,” JCAP 03 (2023) 045, arXiv:2210.12743 [astro-ph.CO].
- A. Pisani et al., “Cosmic voids: a novel probe to shed light on our Universe,” arXiv:1903.05161 [astro-ph.CO].
- Q. Mao, A. A. Berlind, C. K. McBride, R. J. Scherrer, R. Scoccimarro, and M. Manera, “Constraining Primordial Non-Gaussianity with Moments of the Large Scale Density Field,” Mon. Not. Roy. Astron. Soc. 443 no. 2, (2014) 1402–1415, arXiv:1404.3725 [astro-ph.CO].
- C. Uhlemann, E. Pajer, C. Pichon, T. Nishimichi, S. Codis, and F. Bernardeau, “Hunting high and low: Disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres,” Mon. Not. Roy. Astron. Soc. 474 no. 3, (2018) 2853–2870, arXiv:1708.02206 [astro-ph.CO].
- A. Nusser, M. Biagetti, and V. Desjacques, “Abundance of peaks and dips in 3D mass and halo density fields: a test for cosmology,” Mon. Not. Roy. Astron. Soc. 480 no. 2, (2018) 1599–1606, arXiv:1804.05328 [astro-ph.CO].
- O. Friedrich, C. Uhlemann, F. Villaescusa-Navarro, T. Baldauf, M. Manera, and T. Nishimichi, “Primordial non-Gaussianity without tails – how to measure fNL with the bulk of the density PDF,” Mon. Not. Roy. Astron. Soc. 498 no. 1, (2020) 464–483, arXiv:1912.06621 [astro-ph.CO].
- C. Uhlemann, O. Friedrich, F. Villaescusa-Navarro, A. Banerjee, and S. Codis, “Fisher for complements: Extracting cosmology and neutrino mass from the counts-in-cells PDF,” Mon. Not. Roy. Astron. Soc. 495 no. 4, (2020) 4006–4027, arXiv:1911.11158 [astro-ph.CO].
- C. Uhlemann, O. Friedrich, A. Boyle, A. Gough, A. Barthelemy, F. Bernardeau, and S. Codis, “It takes two to know one: Computing accurate one-point PDF covariances from effective two-point PDF models,” Open J. Astrophys. 6 (10, 2022) 2023, arXiv:2210.07819 [astro-ph.CO].
- A. Banerjee and T. Abel, “Nearest neighbour distributions: New statistical measures for cosmological clustering,” Mon. Not. Roy. Astron. Soc. 500 no. 4, (2020) 5479–5499, arXiv:2007.13342 [astro-ph.CO].
- A. Banerjee and T. Abel, “Cosmological cross-correlations and nearest neighbour distributions,” Mon. Not. Roy. Astron. Soc. 504 no. 2, (2021) 2911–2923, arXiv:2102.01184 [astro-ph.CO].
- A. Banerjee, N. Kokron, and T. Abel, “Modeling Nearest Neighbor distributions of biased tracers using Hybrid Effective Field Theory,” arXiv:2107.10287 [astro-ph.CO].
- O. H. E. Philcox and S. Torquato, “Disordered Heterogeneous Universe: Galaxy Distribution and Clustering across Length Scales,” Phys. Rev. X 13 no. 1, (2023) 011038, arXiv:2207.00519 [astro-ph.CO].
- G. Valogiannis and C. Dvorkin, “Towards an optimal estimation of cosmological parameters with the wavelet scattering transform,” Phys. Rev. D 105 no. 10, (2022) 103534, arXiv:2108.07821 [astro-ph.CO].
- M. Eickenberg et al., “Wavelet Moments for Cosmological Parameter Estimation,” arXiv:2204.07646 [astro-ph.CO].
- G. Valogiannis and C. Dvorkin, “Going beyond the galaxy power spectrum: An analysis of BOSS data with wavelet scattering transforms,” Phys. Rev. D 106 no. 10, (2022) 103509, arXiv:2204.13717 [astro-ph.CO].
- C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E. Massara, C. Modi, A. Moradinezhad Dizgah, B. R.-S. Blancard, and M. M. Abidi, “SIMBIGSIMBIG{\rm S{\scriptsize IM}BIG}roman_S roman_IM roman_BIG: A Forward Modeling Approach To Analyzing Galaxy Clustering,” arXiv:2211.00723 [astro-ph.CO].
- S. Yuan, B. Hadzhiyska, and T. Abel, “Full forward model of galaxy clustering statistics with AbacusSummit light cones,” Mon. Not. Roy. Astron. Soc. 520 no. 4, (2023) 6283–6298, arXiv:2211.02068 [astro-ph.CO].
- M. Biagetti, A. Cole, and G. Shiu, “The Persistence of Large Scale Structures I: Primordial non-Gaussianity,” JCAP 04 (2021) 061, arXiv:2009.04819 [astro-ph.CO].
- J. H. T. Yip, A. Rouhiainen, and G. Shiu, “Learning from Topology: Cosmological Parameter Estimation from the Large-scale Structure,” arXiv:2308.02636 [astro-ph.CO].
- A. Cole and G. Shiu, “Persistent Homology and Non-Gaussianity,” JCAP 1803 no. 03, (2018) 025, arXiv:1712.08159 [astro-ph.CO].
- A. Cole and G. Shiu, “Topological Data Analysis for the String Landscape,” JHEP 03 (2019) 054, arXiv:1812.06960 [hep-th].
- N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap for the computation of persistent homology,” EPJ Data Science 6 no. 1, (Aug., 2017) 17. https://doi.org/10.1140/epjds/s13688-017-0109-5.
- M. Biagetti, J. Calles, L. Castiblanco, A. Cole, and J. Noreña, “Fisher forecasts for primordial non-Gaussianity from persistent homology,” JCAP 10 (2022) 002, arXiv:2203.08262 [astro-ph.CO].
- S. Heydenreich, B. Brück, P. Burger, J. Harnois-Déraps, S. Unruh, T. Castro, K. Dolag, and N. Martinet, “Persistent homology in cosmic shear - II. A tomographic analysis of DES-Y1,” Astron. Astrophys. 667 (2022) A125, arXiv:2204.11831 [astro-ph.CO].
- S. Heydenreich, B. Brück, and J. Harnois-Déraps, “Persistent homology in cosmic shear: constraining parameters with topological data analysis,” arXiv:2007.13724 [astro-ph.CO].
- A. Cole, G. J. Loges, and G. Shiu, “Quantitative and interpretable order parameters for phase transitions from persistent homology,” Phys. Rev. B 104 no. 10, (2021) 104426, arXiv:2009.14231 [cond-mat.stat-mech].
- F. Villaescusa-Navarro et al., “The Quijote simulations,” Astrophys. J. Suppl. 250 no. 1, (2020) 2, arXiv:1909.05273 [astro-ph.CO].
- W. R. Coulton, F. Villaescusa-Navarro, D. Jamieson, M. Baldi, G. Jung, D. Karagiannis, M. Liguori, L. Verde, and B. D. Wandelt, “Quijote-PNG: Simulations of Primordial Non-Gaussianity and the Information Content of the Matter Field Power Spectrum and Bispectrum,” Astrophys. J. 943 no. 1, (2023) 64, arXiv:2206.01619 [astro-ph.CO].
- W. R. Coulton, F. Villaescusa-Navarro, D. Jamieson, M. Baldi, G. Jung, D. Karagiannis, M. Liguori, L. Verde, and B. D. Wandelt, “Quijote-PNG: The Information Content of the Halo Power Spectrum and Bispectrum,” Astrophys. J. 943 no. 2, (2023) 178, arXiv:2206.15450 [astro-ph.CO].
- SDSS-III Collaboration, S. Alam et al., “The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III,” Astrophys. J. Suppl. 219 no. 1, (2015) 12, arXiv:1501.00963 [astro-ph.IM].
- B. Reid et al., “SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues,” Mon. Not. Roy. Astron. Soc. 455 no. 2, (2016) 1553–1573, arXiv:1509.06529 [astro-ph.CO].
- G. Gambardella, M. Biagetti, C. Moretti, and E. Sefusatti, “On the range of validity of perturbative models for galaxy clustering and its uncertainty,” arXiv:2311.04608 [astro-ph.CO].
- C. Hahn, F. Villaescusa-Navarro, E. Castorina, and R. Scoccimarro, “Constraining Mνsubscript𝑀𝜈M_{\nu}italic_M start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT with the bispectrum. Part I. Breaking parameter degeneracies,” JCAP 03 (2020) 040, arXiv:1909.11107 [astro-ph.CO].
- D. S. Salopek and J. R. Bond, “Nonlinear evolution of long wavelength metric fluctuations in inflationary models,” Phys. Rev. D42 (1990) 3936–3962.
- P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, “Limits on non-gaussianities from wmap data,” JCAP 05 (2006) 004, arXiv:astro-ph/0509029.
- L. Senatore, K. M. Smith, and M. Zaldarriaga, “Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data,” JCAP 1001 (2010) 028, arXiv:0905.3746 [astro-ph.CO].
- X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, “Observational signatures and non-Gaussianities of general single field inflation,” JCAP 0701 (2007) 002, arXiv:hep-th/0605045 [hep-th].
- https://zenodo.org/records/10008045.
- E. Sefusatti, M. Crocce, R. Scoccimarro, and H. Couchman, “Accurate Estimators of Correlation Functions in Fourier Space,” Mon. Not. Roy. Astron. Soc. 460 no. 4, (2016) 3624–3636, arXiv:1512.07295 [astro-ph.CO].
- J. R. Bond, L. Kofman, and D. Pogosyan, “How filaments are woven into the cosmic web,” Nature 380 (1996) 603–606, arXiv:astro-ph/9512141.
- A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002.
- T. K. Dey and Y. Wang, Computational Topology for Data Analysis. Cambridge University Press, 2022.
- H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,” ACM Transactions on Graphics (TOG) 13 no. 1, (1994) 43–72.
- G. Zhang, Z. Li, J. Liu, D. N. Spergel, C. D. Kreisch, A. Pisani, and B. D. Wandelt, “Void halo mass function: A promising probe of neutrino mass,” Phys. Rev. D 102 no. 8, (2020) 083537, arXiv:1910.07553 [astro-ph.CO].
- F. Chazal, B. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasserman, “Robust topological inference: Distance to a measure and kernel distance,” The Journal of Machine Learning Research 18 no. 1, (2017) 5845–5884.
- The GUDHI Project, GUDHI User and Reference Manual. GUDHI Editorial Board, 3.3.0 ed., 2020. https://gudhi.inria.fr/doc/3.3.0/.
- M. Carrière, S. Y. Oudot, and M. Ovsjanikov, “Stable topological signatures for points on 3d shapes,” in Computer graphics forum, vol. 34, pp. 1–12, Wiley Online Library. 2015.
- P. Bubenik et al., “Statistical topological data analysis using persistence landscapes.” J. Mach. Learn. Res. 16 no. 1, (2015) 77–102.
- H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence images: A stable vector representation of persistent homology,” The Journal of Machine Learning Research 18 no. 1, (2017) 218–252.
- S. Kališnik, “Tropical coordinates on the space of persistence barcodes,” Foundations of Computational Mathematics 19 no. 1, (2019) 101–129.
- M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” Advances in neural information processing systems 30 (2017) .
- M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda, “Perslay: A neural network layer for persistence diagrams and new graph topological signatures,” in International Conference on Artificial Intelligence and Statistics, pp. 2786–2796, PMLR. 2020.
- K. Viswanathan, M. Biagetti, A. Cole, and J. H. T. Yip, “Information-maximizing persistent homology,” to appear in 2024 .
- J. Hartlap, P. Simon, and P. Schneider, “Why your model parameter confidences might be too optimistic: Unbiased estimation of the inverse covariance matrix,” Astron. Astrophys. 464 (2007) 399, arXiv:astro-ph/0608064.
- M. Biagetti, “The Hunt for Primordial Interactions in the Large Scale Structures of the Universe,” Galaxies 7 no. 3, (2019) 71, arXiv:1906.12244 [astro-ph.CO].
- T. Charnock, G. Lavaux, and B. D. Wandelt, “Automatic physical inference with information maximizing neural networks,” Physical Review D 97 no. 8, (Apr, 2018) . http://dx.doi.org/10.1103/PhysRevD.97.083004.
- D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams,” Discrete & Computational Geometry 37 no. 1, (2007) 103–120.
- C. Hahn, R. Scoccimarro, M. R. Blanton, J. L. Tinker, and S. A. Rodríguez-Torres, “The effect of fibre collisions on the galaxy power spectrum multipoles,” Mon. Not. Roy. Astron. Soc. 467 no. 2, (2017) 1940–1956, arXiv:1609.01714 [astro-ph.CO].
- A. Pillepich et al., “Simulating Galaxy Formation with the IllustrisTNG Model,” Mon. Not. Roy. Astron. Soc. 473 no. 3, (2018) 4077–4106, arXiv:1703.02970 [astro-ph.GA].
- R. Davé, D. Anglés-Alcázar, D. Narayanan, Q. Li, M. H. Rafieferantsoa, and S. Appleby, “Simba: Cosmological Simulations with Black Hole Growth and Feedback,” Mon. Not. Roy. Astron. Soc. 486 no. 2, (2019) 2827–2849, arXiv:1901.10203 [astro-ph.GA].
- Center for High Throughput Computing, “Center for high throughput computing,” 2006. https://chtc.cs.wisc.edu/.
- N. Henze and B. Zirkler, “A class of invariant consistent tests for multivariate normality,” Communications in Statistics - Theory and Methods 19 no. 10, (1990) 3595–3617, https://doi.org/10.1080/03610929008830400. https://doi.org/10.1080/03610929008830400.
- C. Hahn and F. Villaescusa-Navarro, “Constraining Mνsubscript𝑀𝜈M_{\nu}italic_M start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT with the bispectrum. Part II. The information content of the galaxy bispectrum monopole,” JCAP 04 (2021) 029, arXiv:2012.02200 [astro-ph.CO].
- E. Paillas, C. Cuesta-Lazaro, P. Zarrouk, Y.-C. Cai, W. J. Percival, S. Nadathur, M. Pinon, A. de Mattia, and F. Beutler, “Constraining ν𝜈\nuitalic_νΛΛ\Lambdaroman_ΛCDM with density-split clustering,” Mon. Not. Roy. Astron. Soc. 522 no. 1, (2023) 606–625, arXiv:2209.04310 [astro-ph.CO].
- G. Jung et al., “Quijote-PNG: The Information Content of the Halo Mass Function,” arXiv:2305.10597 [astro-ph.CO].
- W. R. Coulton and B. D. Wandelt, “How to estimate Fisher information matrices from simulations,” arXiv:2305.08994 [stat.ME].
- Z. Zheng, A. L. Coil, and I. Zehavi, “Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering,” Astrophys. J. 667 (2007) 760–779, arXiv:astro-ph/0703457.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.