Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cosmology with Persistent Homology: a Fisher Forecast (2403.13985v2)

Published 20 Mar 2024 in astro-ph.CO, hep-th, and math.AT

Abstract: Persistent homology naturally addresses the multi-scale topological characteristics of the large-scale structure as a distribution of clusters, loops, and voids. We apply this tool to the dark matter halo catalogs from the Quijote simulations, and build a summary statistic for comparison with the joint power spectrum and bispectrum statistic regarding their information content on cosmological parameters and primordial non-Gaussianity. Through a Fisher analysis, we find that constraints from persistent homology are tighter for 8 out of the 10 parameters by margins of 13-50%. The complementarity of the two statistics breaks parameter degeneracies, allowing for a further gain in constraining power when combined. We run a series of consistency checks to consolidate our results, and conclude that our findings motivate incorporating persistent homology into inference pipelines for cosmological survey data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (128)
  1. G. D’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang, F. Beutler, and H. Gil-Marín, “The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure,” JCAP 05 (2020) 005, arXiv:1909.05271 [astro-ph.CO].
  2. M. M. Ivanov, M. Simonović, and M. Zaldarriaga, “Cosmological Parameters from the BOSS Galaxy Power Spectrum,” JCAP 05 (2020) 042, arXiv:1909.05277 [astro-ph.CO].
  3. M. M. Ivanov, M. Simonović, and M. Zaldarriaga, “Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data,” Phys. Rev. D 101 no. 8, (2020) 083504, arXiv:1912.08208 [astro-ph.CO].
  4. T. Colas, G. D’amico, L. Senatore, P. Zhang, and F. Beutler, “Efficient Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure,” JCAP 06 (2020) 001, arXiv:1909.07951 [astro-ph.CO].
  5. P. Zhang, G. D’Amico, L. Senatore, C. Zhao, and Y. Cai, “BOSS Correlation Function analysis from the Effective Field Theory of Large-Scale Structure,” JCAP 02 no. 02, (2022) 036, arXiv:2110.07539 [astro-ph.CO].
  6. G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, “Constraints on Single-Field Inflation from the BOSS Galaxy Survey,” arXiv:2201.07238 [astro-ph.CO].
  7. G. D’Amico, M. Lewandowski, L. Senatore, and P. Zhang, “Limits on primordial non-Gaussianities from BOSS galaxy-clustering data,” arXiv:2201.11518 [astro-ph.CO].
  8. G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović, and M. Zaldarriaga, “Constraints on multifield inflation from the BOSS galaxy survey,” Phys. Rev. D 106 no. 4, (2022) 043506, arXiv:2204.01781 [astro-ph.CO].
  9. G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore, and P. Zhang, “The BOSS bispectrum analysis at one loop from the Effective Field Theory of Large-Scale Structure,” arXiv:2206.08327 [astro-ph.CO].
  10. M. M. Ivanov, O. H. E. Philcox, G. Cabass, T. Nishimichi, M. Simonović, and M. Zaldarriaga, “Cosmology with the galaxy bispectrum multipoles: Optimal estimation and application to BOSS data,” Phys. Rev. D 107 no. 8, (2023) 083515, arXiv:2302.04414 [astro-ph.CO].
  11. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].
  12. Planck Collaboration, Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” arXiv:1807.06211 [astro-ph.CO].
  13. Planck Collaboration, Y. Akrami et al., “Planck 2018 results. IX. Constraints on primordial non-Gaussianity,” Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO].
  14. D. Baumann and D. Green, “The Power of Locality: Primordial Non-Gaussianity at the Map Level,” arXiv:2112.14645 [astro-ph.CO].
  15. G. Cabass, M. Simonović, and M. Zaldarriaga, “Cosmological Information in Perturbative Forward Modeling,” arXiv:2307.04706 [astro-ph.CO].
  16. J. Jasche and B. D. Wandelt, “Bayesian physical reconstruction of initial conditions from large scale structure surveys,” Mon. Not. Roy. Astron. Soc. 432 (2013) 894, arXiv:1203.3639 [astro-ph.CO].
  17. H. Wang, H. J. Mo, X. Yang, and F. C. v. d. Bosch, “Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs,” Astrophys. J. 772 (2013) 63, arXiv:1301.1348 [astro-ph.CO].
  18. M. Ata, F.-S. Kitaura, and V. Müller, “Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers,” Mon. Not. Roy. Astron. Soc. 446 no. 4, (2015) 4250–4259, arXiv:1408.2566 [astro-ph.CO].
  19. M. Schmittfull, M. Simonović, V. Assassi, and M. Zaldarriaga, “Modeling Biased Tracers at the Field Level,” Phys. Rev. D 100 no. 4, (2019) 043514, arXiv:1811.10640 [astro-ph.CO].
  20. F. Elsner, F. Schmidt, J. Jasche, G. Lavaux, and N.-M. Nguyen, “Cosmology inference from a biased density field using the EFT-based likelihood,” JCAP 01 (2020) 029, arXiv:1906.07143 [astro-ph.CO].
  21. G. Cabass and F. Schmidt, “The EFT Likelihood for Large-Scale Structure,” JCAP 04 (2020) 042, arXiv:1909.04022 [astro-ph.CO].
  22. G. Cabass and F. Schmidt, “The Likelihood for LSS: Stochasticity of Bias Coefficients at All Orders,” JCAP 07 (2020) 051, arXiv:2004.00617 [astro-ph.CO].
  23. F. Schmidt, G. Cabass, J. Jasche, and G. Lavaux, “Unbiased Cosmology Inference from Biased Tracers using the EFT Likelihood,” JCAP 11 (2020) 008, arXiv:2004.06707 [astro-ph.CO].
  24. G. Cabass, “The EFT Likelihood for Large-Scale Structure in Redshift Space,” JCAP 01 (2021) 067, arXiv:2007.14988 [astro-ph.CO].
  25. M. Schmittfull, M. Simonović, M. M. Ivanov, O. H. E. Philcox, and M. Zaldarriaga, “Modeling Galaxies in Redshift Space at the Field Level,” JCAP 05 (2021) 059, arXiv:2012.03334 [astro-ph.CO].
  26. A. Andrews, J. Jasche, G. Lavaux, and F. Schmidt, “Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys,” Mon. Not. Roy. Astron. Soc. 520 no. 4, (2023) 5746–5763, arXiv:2203.08838 [astro-ph.CO].
  27. A. E. Bayer, U. Seljak, and C. Modi, “Field-Level Inference with Microcanonical Langevin Monte Carlo,” in 40th International Conference on Machine Learning. 7, 2023. arXiv:2307.09504 [astro-ph.CO].
  28. J. Robnik, G. B. De Luca, E. Silverstein, and U. Seljak, “Microcanonical Hamiltonian Monte Carlo,” arXiv:2212.08549 [stat.CO].
  29. J. Robnik and U. Seljak, “Microcanonical Langevin Monte Carlo,” arXiv:2303.18221 [hep-lat].
  30. D. Greenberg, M. Nonnenmacher, and J. Macke, “Automatic posterior transformation for likelihood-free inference,” in International Conference on Machine Learning, pp. 2404–2414, PMLR. 2019.
  31. G. Papamakarios, D. Sterratt, and I. Murray, “Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows,” in The 22nd International Conference on Artificial Intelligence and Statistics, pp. 837–848, PMLR. 2019.
  32. J. Hermans, V. Begy, and G. Louppe, “Likelihood-free mcmc with amortized approximate ratio estimators,” in International Conference on Machine Learning, pp. 4239–4248, PMLR. 2020.
  33. B. K. Miller, A. Cole, P. Forré, G. Louppe, and C. Weniger, “Truncated Marginal Neural Ratio Estimation,” arXiv:2107.01214 [stat.ML].
  34. N. Anau Montel, J. Alvey, and C. Weniger, “Scalable inference with Autoregressive Neural Ratio Estimation,” arXiv:2308.08597 [astro-ph.IM].
  35. L. Heinrich, S. Mishra-Sharma, C. Pollard, and P. Windischhofer, “Hierarchical Neural Simulation-Based Inference Over Event Ensembles,” arXiv:2306.12584 [stat.ML].
  36. K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-based inference,” Proceedings of the National Academy of Sciences 117 no. 48, (2020) 30055–30062.
  37. J. Alsing, T. Charnock, S. Feeney, and B. Wandelt, “Fast likelihood-free cosmology with neural density estimators and active learning,” Mon. Not. Roy. Astron. Soc. 488 no. 3, (2019) 4440–4458, arXiv:1903.00007 [astro-ph.CO].
  38. F. Villaescusa-Navarro et al., “Robust marginalization of baryonic effects for cosmological inference at the field level,” arXiv:2109.10360 [astro-ph.CO].
  39. F. Villaescusa-Navarro et al., “Multifield Cosmology with Artificial Intelligence,” arXiv:2109.09747 [astro-ph.CO].
  40. T. L. Makinen, T. Charnock, J. Alsing, and B. D. Wandelt, “Lossless, scalable implicit likelihood inference for cosmological fields,” JCAP 11 no. 11, (2021) 049, arXiv:2107.07405 [astro-ph.CO].
  41. A. Cole, B. K. Miller, S. J. Witte, M. X. Cai, M. W. Grootes, F. Nattino, and C. Weniger, “Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation,” arXiv:2111.08030 [astro-ph.CO].
  42. P. Lemos, M. Cranmer, M. Abidi, C. Hahn, M. Eickenberg, E. Massara, D. Yallup, and S. Ho, “Robust simulation-based inference in cosmology with Bayesian neural networks,” Mach. Learn. Sci. Tech. 4 no. 1, (2023) 01LT01, arXiv:2207.08435 [astro-ph.CO].
  43. C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E. Massara, C. Modi, A. Moradinezhad Dizgah, B. R.-S. Blancard, and M. M. Abidi, “SimBIG: mock challenge for a forward modeling approach to galaxy clustering,” JCAP 04 (2023) 010, arXiv:2211.00660 [astro-ph.CO].
  44. B. Tucci and F. Schmidt, “EFTofLSS meets simulation-based inference: σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT from biased tracers,” arXiv:2310.03741 [astro-ph.CO].
  45. F. List, N. Anau Montel, and C. Weniger, “Bayesian Simulation-based Inference for Cosmological Initial Conditions,” in 37th Conference on Neural Information Processing Systems. 10, 2023. arXiv:2310.19910 [astro-ph.CO].
  46. C. Modi, S. Pandey, M. Ho, C. Hahn, B. Régaldo-Saint Blancard, and B. Wandelt, “Sensitivity Analysis of Simulation-Based Inference for Galaxy Clustering,” arXiv:2309.15071 [astro-ph.CO].
  47. C. Modi and O. H. E. Philcox, “Hybrid SBI or How I Learned to Stop Worrying and Learn the Likelihood,” arXiv:2309.10270 [astro-ph.CO].
  48. J. Alsing and B. Wandelt, “Nuisance hardened data compression for fast likelihood-free inference,” Mon. Not. Roy. Astron. Soc. 488 no. 4, (2019) 5093–5103, arXiv:1903.01473 [astro-ph.CO].
  49. M. C. Neyrinck, I. Szapudi, and A. S. Szalay, “Rejuvenating the matter power spectrum: restoring information with a logarithmic density mapping,” Astrophys. J. Lett. 698 (2009) L90–L93, arXiv:0903.4693 [astro-ph.CO].
  50. M. White, “A marked correlation function for constraining modified gravity models,” JCAP 11 (2016) 057, arXiv:1609.08632 [astro-ph.CO].
  51. S. Satpathy, R. A. C. Croft, S. Ho, and B. Li, “Measurement of marked correlation functions in SDSS-III Baryon Oscillation Spectroscopic Survey using LOWZ galaxies in Data Release 12,” Mon. Not. Roy. Astron. Soc. 484 no. 2, (2019) 2148–2165, arXiv:1901.01447 [astro-ph.CO].
  52. A. Aviles, K. Koyama, J. L. Cervantes-Cota, H. A. Winther, and B. Li, “Marked correlation functions in perturbation theory,” JCAP 01 (2020) 006, arXiv:1911.06362 [astro-ph.CO].
  53. E. Massara, F. Villaescusa-Navarro, S. Ho, N. Dalal, and D. N. Spergel, “Using the Marked Power Spectrum to Detect the Signature of Neutrinos in Large-Scale Structure,” Phys. Rev. Lett. 126 no. 1, (2021) 011301, arXiv:2001.11024 [astro-ph.CO].
  54. O. H. E. Philcox, A. Aviles, and E. Massara, “Modeling the Marked Spectrum of Matter and Biased Tracers in Real- and Redshift-Space,” JCAP 03 (2021) 038, arXiv:2010.05914 [astro-ph.CO].
  55. O. H. E. Philcox, E. Massara, and D. N. Spergel, “What does the marked power spectrum measure? Insights from perturbation theory,” Phys. Rev. D 102 no. 4, (2020) 043516, arXiv:2006.10055 [astro-ph.CO].
  56. E. Massara, F. Villaescusa-Navarro, C. Hahn, M. M. Abidi, M. Eickenberg, S. Ho, P. Lemos, A. Moradinezhad Dizgah, and B. R.-S. Blancard, “Cosmological Information in the Marked Power Spectrum of the Galaxy Field,” Astrophys. J. 951 no. 1, (2023) 70, arXiv:2206.01709 [astro-ph.CO].
  57. M. Schmittfull, T. Baldauf, and U. Seljak, “Near optimal bispectrum estimators for large-scale structure,” Phys. Rev. D 91 no. 4, (2015) 043530, arXiv:1411.6595 [astro-ph.CO].
  58. A. Moradinezhad Dizgah, H. Lee, M. Schmittfull, and C. Dvorkin, “Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra,” JCAP 04 (2020) 011, arXiv:1911.05763 [astro-ph.CO].
  59. J.-P. Dai, L. Verde, and J.-Q. Xia, “What Can We Learn by Combining the Skew Spectrum and the Power Spectrum?,” JCAP 08 (2020) 007, arXiv:2002.09904 [astro-ph.CO].
  60. M. Schmittfull and A. Moradinezhad Dizgah, “Galaxy skew-spectra in redshift-space,” JCAP 03 (2021) 020, arXiv:2010.14267 [astro-ph.CO].
  61. P. Chakraborty, S.-F. Chen, and C. Dvorkin, “Skewing the CMB×LSS: a fast method for bispectrum analysis,” JCAP 07 no. 07, (2022) 038, arXiv:2202.11724 [astro-ph.CO].
  62. J. Hou, A. Moradinezhad Dizgah, C. Hahn, and E. Massara, “Cosmological information in skew spectra of biased tracers in redshift space,” JCAP 03 (2023) 045, arXiv:2210.12743 [astro-ph.CO].
  63. A. Pisani et al., “Cosmic voids: a novel probe to shed light on our Universe,” arXiv:1903.05161 [astro-ph.CO].
  64. Q. Mao, A. A. Berlind, C. K. McBride, R. J. Scherrer, R. Scoccimarro, and M. Manera, “Constraining Primordial Non-Gaussianity with Moments of the Large Scale Density Field,” Mon. Not. Roy. Astron. Soc. 443 no. 2, (2014) 1402–1415, arXiv:1404.3725 [astro-ph.CO].
  65. C. Uhlemann, E. Pajer, C. Pichon, T. Nishimichi, S. Codis, and F. Bernardeau, “Hunting high and low: Disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres,” Mon. Not. Roy. Astron. Soc. 474 no. 3, (2018) 2853–2870, arXiv:1708.02206 [astro-ph.CO].
  66. A. Nusser, M. Biagetti, and V. Desjacques, “Abundance of peaks and dips in 3D mass and halo density fields: a test for cosmology,” Mon. Not. Roy. Astron. Soc. 480 no. 2, (2018) 1599–1606, arXiv:1804.05328 [astro-ph.CO].
  67. O. Friedrich, C. Uhlemann, F. Villaescusa-Navarro, T. Baldauf, M. Manera, and T. Nishimichi, “Primordial non-Gaussianity without tails – how to measure fNL with the bulk of the density PDF,” Mon. Not. Roy. Astron. Soc. 498 no. 1, (2020) 464–483, arXiv:1912.06621 [astro-ph.CO].
  68. C. Uhlemann, O. Friedrich, F. Villaescusa-Navarro, A. Banerjee, and S. Codis, “Fisher for complements: Extracting cosmology and neutrino mass from the counts-in-cells PDF,” Mon. Not. Roy. Astron. Soc. 495 no. 4, (2020) 4006–4027, arXiv:1911.11158 [astro-ph.CO].
  69. C. Uhlemann, O. Friedrich, A. Boyle, A. Gough, A. Barthelemy, F. Bernardeau, and S. Codis, “It takes two to know one: Computing accurate one-point PDF covariances from effective two-point PDF models,” Open J. Astrophys. 6 (10, 2022) 2023, arXiv:2210.07819 [astro-ph.CO].
  70. A. Banerjee and T. Abel, “Nearest neighbour distributions: New statistical measures for cosmological clustering,” Mon. Not. Roy. Astron. Soc. 500 no. 4, (2020) 5479–5499, arXiv:2007.13342 [astro-ph.CO].
  71. A. Banerjee and T. Abel, “Cosmological cross-correlations and nearest neighbour distributions,” Mon. Not. Roy. Astron. Soc. 504 no. 2, (2021) 2911–2923, arXiv:2102.01184 [astro-ph.CO].
  72. A. Banerjee, N. Kokron, and T. Abel, “Modeling Nearest Neighbor distributions of biased tracers using Hybrid Effective Field Theory,” arXiv:2107.10287 [astro-ph.CO].
  73. O. H. E. Philcox and S. Torquato, “Disordered Heterogeneous Universe: Galaxy Distribution and Clustering across Length Scales,” Phys. Rev. X 13 no. 1, (2023) 011038, arXiv:2207.00519 [astro-ph.CO].
  74. G. Valogiannis and C. Dvorkin, “Towards an optimal estimation of cosmological parameters with the wavelet scattering transform,” Phys. Rev. D 105 no. 10, (2022) 103534, arXiv:2108.07821 [astro-ph.CO].
  75. M. Eickenberg et al., “Wavelet Moments for Cosmological Parameter Estimation,” arXiv:2204.07646 [astro-ph.CO].
  76. G. Valogiannis and C. Dvorkin, “Going beyond the galaxy power spectrum: An analysis of BOSS data with wavelet scattering transforms,” Phys. Rev. D 106 no. 10, (2022) 103509, arXiv:2204.13717 [astro-ph.CO].
  77. C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E. Massara, C. Modi, A. Moradinezhad Dizgah, B. R.-S. Blancard, and M. M. Abidi, “S⁢IM⁢BIGSIMBIG{\rm S{\scriptsize IM}BIG}roman_S roman_IM roman_BIG: A Forward Modeling Approach To Analyzing Galaxy Clustering,” arXiv:2211.00723 [astro-ph.CO].
  78. S. Yuan, B. Hadzhiyska, and T. Abel, “Full forward model of galaxy clustering statistics with AbacusSummit light cones,” Mon. Not. Roy. Astron. Soc. 520 no. 4, (2023) 6283–6298, arXiv:2211.02068 [astro-ph.CO].
  79. M. Biagetti, A. Cole, and G. Shiu, “The Persistence of Large Scale Structures I: Primordial non-Gaussianity,” JCAP 04 (2021) 061, arXiv:2009.04819 [astro-ph.CO].
  80. J. H. T. Yip, A. Rouhiainen, and G. Shiu, “Learning from Topology: Cosmological Parameter Estimation from the Large-scale Structure,” arXiv:2308.02636 [astro-ph.CO].
  81. A. Cole and G. Shiu, “Persistent Homology and Non-Gaussianity,” JCAP 1803 no. 03, (2018) 025, arXiv:1712.08159 [astro-ph.CO].
  82. A. Cole and G. Shiu, “Topological Data Analysis for the String Landscape,” JHEP 03 (2019) 054, arXiv:1812.06960 [hep-th].
  83. N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap for the computation of persistent homology,” EPJ Data Science 6 no. 1, (Aug., 2017) 17. https://doi.org/10.1140/epjds/s13688-017-0109-5.
  84. M. Biagetti, J. Calles, L. Castiblanco, A. Cole, and J. Noreña, “Fisher forecasts for primordial non-Gaussianity from persistent homology,” JCAP 10 (2022) 002, arXiv:2203.08262 [astro-ph.CO].
  85. S. Heydenreich, B. Brück, P. Burger, J. Harnois-Déraps, S. Unruh, T. Castro, K. Dolag, and N. Martinet, “Persistent homology in cosmic shear - II. A tomographic analysis of DES-Y1,” Astron. Astrophys. 667 (2022) A125, arXiv:2204.11831 [astro-ph.CO].
  86. S. Heydenreich, B. Brück, and J. Harnois-Déraps, “Persistent homology in cosmic shear: constraining parameters with topological data analysis,” arXiv:2007.13724 [astro-ph.CO].
  87. A. Cole, G. J. Loges, and G. Shiu, “Quantitative and interpretable order parameters for phase transitions from persistent homology,” Phys. Rev. B 104 no. 10, (2021) 104426, arXiv:2009.14231 [cond-mat.stat-mech].
  88. F. Villaescusa-Navarro et al., “The Quijote simulations,” Astrophys. J. Suppl. 250 no. 1, (2020) 2, arXiv:1909.05273 [astro-ph.CO].
  89. W. R. Coulton, F. Villaescusa-Navarro, D. Jamieson, M. Baldi, G. Jung, D. Karagiannis, M. Liguori, L. Verde, and B. D. Wandelt, “Quijote-PNG: Simulations of Primordial Non-Gaussianity and the Information Content of the Matter Field Power Spectrum and Bispectrum,” Astrophys. J. 943 no. 1, (2023) 64, arXiv:2206.01619 [astro-ph.CO].
  90. W. R. Coulton, F. Villaescusa-Navarro, D. Jamieson, M. Baldi, G. Jung, D. Karagiannis, M. Liguori, L. Verde, and B. D. Wandelt, “Quijote-PNG: The Information Content of the Halo Power Spectrum and Bispectrum,” Astrophys. J. 943 no. 2, (2023) 178, arXiv:2206.15450 [astro-ph.CO].
  91. SDSS-III Collaboration, S. Alam et al., “The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III,” Astrophys. J. Suppl. 219 no. 1, (2015) 12, arXiv:1501.00963 [astro-ph.IM].
  92. B. Reid et al., “SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues,” Mon. Not. Roy. Astron. Soc. 455 no. 2, (2016) 1553–1573, arXiv:1509.06529 [astro-ph.CO].
  93. G. Gambardella, M. Biagetti, C. Moretti, and E. Sefusatti, “On the range of validity of perturbative models for galaxy clustering and its uncertainty,” arXiv:2311.04608 [astro-ph.CO].
  94. C. Hahn, F. Villaescusa-Navarro, E. Castorina, and R. Scoccimarro, “Constraining Mνsubscript𝑀𝜈M_{\nu}italic_M start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT with the bispectrum. Part I. Breaking parameter degeneracies,” JCAP 03 (2020) 040, arXiv:1909.11107 [astro-ph.CO].
  95. D. S. Salopek and J. R. Bond, “Nonlinear evolution of long wavelength metric fluctuations in inflationary models,” Phys. Rev. D42 (1990) 3936–3962.
  96. P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, “Limits on non-gaussianities from wmap data,” JCAP 05 (2006) 004, arXiv:astro-ph/0509029.
  97. L. Senatore, K. M. Smith, and M. Zaldarriaga, “Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data,” JCAP 1001 (2010) 028, arXiv:0905.3746 [astro-ph.CO].
  98. X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, “Observational signatures and non-Gaussianities of general single field inflation,” JCAP 0701 (2007) 002, arXiv:hep-th/0605045 [hep-th].
  99. https://zenodo.org/records/10008045.
  100. E. Sefusatti, M. Crocce, R. Scoccimarro, and H. Couchman, “Accurate Estimators of Correlation Functions in Fourier Space,” Mon. Not. Roy. Astron. Soc. 460 no. 4, (2016) 3624–3636, arXiv:1512.07295 [astro-ph.CO].
  101. J. R. Bond, L. Kofman, and D. Pogosyan, “How filaments are woven into the cosmic web,” Nature 380 (1996) 603–606, arXiv:astro-ph/9512141.
  102. A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002.
  103. T. K. Dey and Y. Wang, Computational Topology for Data Analysis. Cambridge University Press, 2022.
  104. H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,” ACM Transactions on Graphics (TOG) 13 no. 1, (1994) 43–72.
  105. G. Zhang, Z. Li, J. Liu, D. N. Spergel, C. D. Kreisch, A. Pisani, and B. D. Wandelt, “Void halo mass function: A promising probe of neutrino mass,” Phys. Rev. D 102 no. 8, (2020) 083537, arXiv:1910.07553 [astro-ph.CO].
  106. F. Chazal, B. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasserman, “Robust topological inference: Distance to a measure and kernel distance,” The Journal of Machine Learning Research 18 no. 1, (2017) 5845–5884.
  107. The GUDHI Project, GUDHI User and Reference Manual. GUDHI Editorial Board, 3.3.0 ed., 2020. https://gudhi.inria.fr/doc/3.3.0/.
  108. M. Carrière, S. Y. Oudot, and M. Ovsjanikov, “Stable topological signatures for points on 3d shapes,” in Computer graphics forum, vol. 34, pp. 1–12, Wiley Online Library. 2015.
  109. P. Bubenik et al., “Statistical topological data analysis using persistence landscapes.” J. Mach. Learn. Res. 16 no. 1, (2015) 77–102.
  110. H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence images: A stable vector representation of persistent homology,” The Journal of Machine Learning Research 18 no. 1, (2017) 218–252.
  111. S. Kališnik, “Tropical coordinates on the space of persistence barcodes,” Foundations of Computational Mathematics 19 no. 1, (2019) 101–129.
  112. M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” Advances in neural information processing systems 30 (2017) .
  113. M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda, “Perslay: A neural network layer for persistence diagrams and new graph topological signatures,” in International Conference on Artificial Intelligence and Statistics, pp. 2786–2796, PMLR. 2020.
  114. K. Viswanathan, M. Biagetti, A. Cole, and J. H. T. Yip, “Information-maximizing persistent homology,” to appear in 2024 .
  115. J. Hartlap, P. Simon, and P. Schneider, “Why your model parameter confidences might be too optimistic: Unbiased estimation of the inverse covariance matrix,” Astron. Astrophys. 464 (2007) 399, arXiv:astro-ph/0608064.
  116. M. Biagetti, “The Hunt for Primordial Interactions in the Large Scale Structures of the Universe,” Galaxies 7 no. 3, (2019) 71, arXiv:1906.12244 [astro-ph.CO].
  117. T. Charnock, G. Lavaux, and B. D. Wandelt, “Automatic physical inference with information maximizing neural networks,” Physical Review D 97 no. 8, (Apr, 2018) . http://dx.doi.org/10.1103/PhysRevD.97.083004.
  118. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams,” Discrete & Computational Geometry 37 no. 1, (2007) 103–120.
  119. C. Hahn, R. Scoccimarro, M. R. Blanton, J. L. Tinker, and S. A. Rodríguez-Torres, “The effect of fibre collisions on the galaxy power spectrum multipoles,” Mon. Not. Roy. Astron. Soc. 467 no. 2, (2017) 1940–1956, arXiv:1609.01714 [astro-ph.CO].
  120. A. Pillepich et al., “Simulating Galaxy Formation with the IllustrisTNG Model,” Mon. Not. Roy. Astron. Soc. 473 no. 3, (2018) 4077–4106, arXiv:1703.02970 [astro-ph.GA].
  121. R. Davé, D. Anglés-Alcázar, D. Narayanan, Q. Li, M. H. Rafieferantsoa, and S. Appleby, “Simba: Cosmological Simulations with Black Hole Growth and Feedback,” Mon. Not. Roy. Astron. Soc. 486 no. 2, (2019) 2827–2849, arXiv:1901.10203 [astro-ph.GA].
  122. Center for High Throughput Computing, “Center for high throughput computing,” 2006. https://chtc.cs.wisc.edu/.
  123. N. Henze and B. Zirkler, “A class of invariant consistent tests for multivariate normality,” Communications in Statistics - Theory and Methods 19 no. 10, (1990) 3595–3617, https://doi.org/10.1080/03610929008830400. https://doi.org/10.1080/03610929008830400.
  124. C. Hahn and F. Villaescusa-Navarro, “Constraining Mνsubscript𝑀𝜈M_{\nu}italic_M start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT with the bispectrum. Part II. The information content of the galaxy bispectrum monopole,” JCAP 04 (2021) 029, arXiv:2012.02200 [astro-ph.CO].
  125. E. Paillas, C. Cuesta-Lazaro, P. Zarrouk, Y.-C. Cai, W. J. Percival, S. Nadathur, M. Pinon, A. de Mattia, and F. Beutler, “Constraining ν𝜈\nuitalic_νΛΛ\Lambdaroman_ΛCDM with density-split clustering,” Mon. Not. Roy. Astron. Soc. 522 no. 1, (2023) 606–625, arXiv:2209.04310 [astro-ph.CO].
  126. G. Jung et al., “Quijote-PNG: The Information Content of the Halo Mass Function,” arXiv:2305.10597 [astro-ph.CO].
  127. W. R. Coulton and B. D. Wandelt, “How to estimate Fisher information matrices from simulations,” arXiv:2305.08994 [stat.ME].
  128. Z. Zheng, A. L. Coil, and I. Zehavi, “Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering,” Astrophys. J. 667 (2007) 760–779, arXiv:astro-ph/0703457.
Citations (4)

Summary

  • The paper demonstrates that persistent homology yields tighter constraints (by 13-50%) on key cosmological parameters compared to conventional statistics.
  • It employs innovative persistence diagrams vectorized into histograms to analyze dark matter halo data from Quijote simulations.
  • Combining persistent homology with power spectrum methods breaks parameter degeneracies, enhancing overall inference accuracy.

Cosmology with Persistent Homology: A Fisher Forecast

The paper "Cosmology with Persistent Homology: a Fisher Forecast" explores the application of persistent homology—a tool from computational topology—for extracting cosmological information. It evaluates how well this method can constrain cosmological parameters and primordial non-Gaussianity when compared to more conventional methods like the power spectrum and bispectrum analysis.

Overview

Persistent homology provides a mechanism to quantify and analyze the topology of data across multiple scales, capturing features such as clusters, loops, and voids within the cosmic web. This paper applies persistent homology to dark matter halo catalogs derived from the Quijote simulations, comparing its efficacy to traditional joint power spectrum and bispectrum statistics.

Methodology

The core of this inquiry lies in developing summary statistics from persistence diagrams, which represent the birth and death of topological features detected in the halo distributions. Through a Fisher analysis that comprehensively compares these persistence-based statistics against conventional correlation function methods, the research identifies their respective capacities to constrain cosmological parameters and detect signatures of primordial non-Gaussianity.

  1. Data and Filtration: The authors utilize the Quijote halo catalogs with various cosmological parameters, applying a novel α\alpha-DTM\ell-filtration that incorporates local point density measurements to delay the addition of simplices for outliers.
  2. Statistics from Persistence Diagrams: Persistent homology yields persistence diagrams which are vectorized into histograms of the number of features born and died at different scales. These histograms serve as the data vector in a Fisher information context.
  3. Comparison Metrics: By constructing summary statistics over multiple nearest-neighbor parameters, the team assesses how much additional information persistent homology can recover, beyond traditional two- and three-point correlation functions.

Results and Discussion

The paper reports significant findings regarding the effectiveness of persistent homology compared to conventional statistics:

  • Persistent homology achieves tighter constraints for 8 out of the 10 parameters, improving precision by 13-50%, particularly in relation to σ8\sigma_8, total neutrino mass, and dark energy equation of state parameters.
  • The combination of statistics from both persistent homology and power spectrum methodologies leads to substantial improvements in parameter constraints, demonstrating the complementary nature of the information captured by these methods.
  • The analysis reveals distinct degeneracy directions between parameters when using persistent homology, allowing it to break degeneracies better when combined with traditional metrics.

The paper also tackles the challenge of analyzing intricate non-linear structures inherent in the large-scale universe, which often evade traditional statistical methods. The persistent homology approach provides a promising avenue for cosmological analysis because of its inherent multi-scale sensitivity to topological features.

Implications and Future Prospects

The research underscores the potential role of persistent homology in future cosmological surveys, where extracting maximum information from observational data is paramount. It suggests several pathways for further inquiry:

  • Simulation-Driven Optimization: As computational resources improve, fully leveraging persistent homology for cosmological inference may be achieved through simulation-driven optimizations, potentially combined with machine learning techniques.
  • Extensions to Real Data: Beyond simulations, the methods proposed could handle realistic galaxy surveys, taking into account observational constraints like redshift errors and sample biases.
  • Integration into Broader Inference Pipelines: Persistent homology could be embedded within broader machine-learning frameworks aimed at improving efficiency in cosmological parameter inference.

This paper represents a significant stride in applying topological data analysis within cosmology, illuminating how persistent homology can enrich our understanding of cosmic structures while providing robust, complementary insights to prevailing analytical methods.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 127 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com