Papers
Topics
Authors
Recent
2000 character limit reached

Needle in a haystack: efficiently finding atomically defined quantum dots for electrostatic force microscopy (2403.13935v1)

Published 20 Mar 2024 in cond-mat.mes-hall and physics.ins-det

Abstract: The ongoing development of single electron, nano and atomic scale semiconductor devices would benefit greatly from a characterization tool capable of detecting single electron charging events with high spatial resolution, at low temperature. In this work, we introduce a novel Atomic Force Microscope (AFM) instrument capable of measuring critical device dimensions, surface roughness, electrical surface potential, and ultimately the energy levels of quantum dots and single electron transistors in ultra miniaturized semiconductor devices. Characterization of nanofabricated devices with this type of instrument presents a challenge: finding the device. We therefore also present a process to efficiently find a nanometre size quantum dot buried in a $10 \times 10~\text{mm}2$ silicon sample using a combination of optical positioning, capacitive sensors and AFM topography in vacuum.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. G. Binnig, H. Rohrer, C. Gerber,  and E. Weibel, “Tunneling through a controllable vacuum gap,” Applied Physics Letters 40, 178–180 (1982a), https://pubs.aip.org/aip/apl/article-pdf/40/2/178/7748784/178_1_online.pdf .
  2. F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949–983 (2003).
  3. T. J. Z. Stock, O. Warschkow, P. C. Constantinou, J. Li, S. Fearn, E. Crane, E. V. S. Hofmann, A. Kölker, D. R. McKenzie, S. R. Schofield,  and N. J. Curson, “Atomic-scale patterning of arsenic in silicon by scanning tunneling microscopy,” ACS Nano 14, 3316–3327 (2020), pMID: 32142256, https://doi.org/10.1021/acsnano.9b08943 .
  4. S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueß, T. Hallam, L. Oberbeck,  and R. G. Clark, “Atomically precise placement of single dopants in si,” Phys. Rev. Lett. 91, 136104 (2003).
  5. A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin,  and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Review of Scientific Instruments 86, 013107 (2015), https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/1.4905682/13814675/013107_1_online.pdf .
  6. A. V. Ermakov and E. L. Garfunkel, “A novel AFM/STM/SEM system,” Review of Scientific Instruments 65, 2853–2854 (1994), https://pubs.aip.org/aip/rsi/article-pdf/65/9/2853/8806610/2853_1_online.pdf .
  7. T. R. Albrecht, P. Grütter, D. Horne,  and D. Rugar, “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” Journal of Applied Physics 69, 668–673 (1991), https://pubs.aip.org/aip/jap/article-pdf/69/2/668/10574945/668_1_online.pdf .
  8. Y. Miyahara, H. Griffin, A. Roy-Gobeil, R. Belyansky, H. Bergeron, J. Bustamante,  and P. Grutter, “Optical excitation of atomic force microscopy cantilever for accurate spectroscopic measurements,” EPJ Techniques and Instrumentation 7, 2 (2020).
  9. H. Liu, Z. Ahmed, S. Vranjkovic, M. Parschau, A.-O. Mandru,  and H. J. Hug, “A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy,” Beilstein Journal of Nanotechnology 13, 1120–1140 (2022).
  10. S. B. Field and J. Barentine, “Capacitive position sensor with simultaneous, linear X–Y readout,” Review of Scientific Instruments 71, 2603–2607 (2000), https://pubs.aip.org/aip/rsi/article-pdf/71/6/2603/11104508/2603_1_online.pdf .
  11. P. S. Ho and T. Kwok, “Electromigration in metals,” Reports on Progress in Physics 52, 301 (1989).
  12. A. Labuda, Y. Miyahara, L. Cockins,  and P. H. Grütter, “Decoupling conservative and dissipative forces in frequency modulation atomic force microscopy,” Phys. Rev. B 84, 125433 (2011).
  13. Y. Miyahara, J. Topple, Z. Schumacher,  and P. Grutter, “Kelvin probe force microscopy by dissipative electrostatic force modulation,” Phys. Rev. Appl. 4, 054011 (2015).
  14. Y. Miyahara and P. Grutter, “Force-gradient sensitive kelvin probe force microscopy by dissipative electrostatic force modulation,” Applied Physics Letters 110 (2017).
  15. L. Cockins, Y. Miyahara, S. D. Bennett, A. A. Clerk, S. Studenikin, P. Poole, A. Sachrajda,  and P. Grutter, “Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy,” Proceedings of the National Academy of Sciences 107, 9496–9501 (2010).
  16. K. Kato, T. Yamasaki,  and T. Uda, “Origin of Pb⁢1subscript𝑃𝑏1{P}_{b1}italic_P start_POSTSUBSCRIPT italic_b 1 end_POSTSUBSCRIPT center at Sio2/Si⁢(100)subscriptSio2Si100\mathrm{Si}{\mathrm{o}}_{2}/\mathrm{Si}(100)roman_Sio start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / roman_Si ( 100 ) interface: First-principles calculations,” Phys. Rev. B 73, 073302 (2006).
  17. M. Cowie, T. J. Stock, P. C. Constantinou, N. J. Curson,  and P. Grütter, “Spatially resolved dielectric loss at the s⁢i/s⁢i⁢o2𝑠𝑖𝑠𝑖subscript𝑜2si/sio_{2}italic_s italic_i / italic_s italic_i italic_o start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT interface,” Under review, ArXiv: 2306.13648 , 0 (2023).
  18. Y. Miyahara, A. Roy-Gobeil,  and P. Grutter, “Quantum state readout of individual quantum dots by electrostatic force detection,” Nanotechnology 28, 064001 (2017).
  19. S. Sze, Semiconductor Devices: Physics and Technology (John Wiley & Sons Singapore Pte. Limited, 2012).
  20. M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. Hollenberg, G. Klimeck,  and M. Y. Simmons, “A single-atom transistor,” Nature nanotechnology 7, 242–246 (2012).
  21. I. W. Rangelow, M. Kaestner, T. Ivanov, A. Ahmad, S. Lenk, C. Lenk, E. Guliyev, A. Reum, M. Hofmann, C. Reuter, et al., “Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy,” Journal of Vacuum Science & Technology B 36 (2018).
  22. P. Russell, D. Batchelor,  and J. Thornton, “Sem and afm: complementary techniques for high resolution surface investigations,” Veeco Instruments Inc., AN46, Rev A 1, 2004 (2001).
  23. G. Binnig, H. Rohrer, C. Gerber,  and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982b).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.