Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PINNferring the Hubble Function with Uncertainties (2403.13899v1)

Published 20 Mar 2024 in astro-ph.CO, astro-ph.IM, and hep-ph

Abstract: The Hubble function characterizes a given Friedmann-Robertson-Walker spacetime and can be related to the densities of the cosmological fluids and their equations of state. We show how physics-informed neural networks (PINNs) emulate this dynamical system and provide fast predictions of the luminosity distance for a given choice of densities and equations of state, as needed for the analysis of supernova data. We use this emulator to perform a model-independent and parameter-free reconstruction of the Hubble function on the basis of supernova data. As part of this study, we develop and validate an uncertainty treatment for PINNs using a heteroscedastic loss and repulsive ensembles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: