Ionized Gas in an Annular Region (2403.13174v2)
Abstract: We consider a plasma that is created by a high voltage difference $\lambda$, which is known as a Townsend discharge. We consider it to be confined to the region $\Omega$ between two concentric spheres, two concentric cylinders, or more generally between two star-shaped surfaces. We first prove that if the plasma is initially relatively dilute, then either it may remain dilute for all time or it may not, depending on a certain parameter $\kappa(\lambda, \Omega)$. Secondly, we prove that there is a connected one-parameter family of steady states. This family connects the non-ionized gas to a plasma, either with a sparking voltage $\lambda*$ or with very high ionization, at least in the cylindrical or spherical cases.
- I. Abbas and P. Bayle, A critical analysis of ionising wave propagation mechanisms in breakdown, J. Phys. D: Appl. Phys. 13 (1980), 1055–1068.
- M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J.  Functional  Analysis 8 (1971), 321–340.
- A. Constantin, W. Strauss and E. Varvaruca, Global bifurcation of steady gravity water waves with critical layers, Acta Math. 217 (2016), 195–262.
- E. N. Dancer, Bifurcation theory for analytic operators, Proc.  London  Math.  Soc. 26 (1973), 359–384.
- P. Degond and B. Lucquin-Desreux, Mathematical models of electrical discharges in air at atmospheric pressure: a derivation from asymptotic analysis, Int. J. Compu. Sci. Math. 1 (2007), 58–97.
- S. K. Dhali and P. F. Williams, Twodimensional studies of streamers in gases, J. Appl. Phys. 62 (1987), 4694–4707.
- P. A. Durbin and L. Turyn, Analysis of the positive DC corona between coaxial cylinders, J. Phys. D: Appl. Phys. 20 (1987), 1490–1496.
- L.C. Evans, Partial differential equations, Second edition, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, 2010.
- H. Kielhöfer, Bifurcation theory, An introduction with applications to partial differential equations, Second edition, Applied Mathematical Sciences 156, Springer, New York, 2012.
- A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, IEEE Trans. Plasma Sci. 30 (1997), 441–450.
- A. A. Kulikovsky, The role of photoionization in positive streamer dynamics, J. Phys. D: Appl. Phys. 33 (2000), 1514–1524.
- S. Z. Li and H. S. Uhm Investigation of electrical breakdown characteristics in the electrodes of cylindrical geometry, Phys. Plasmas 11 (2004), 3088–3095.
- A. Luque, V. Ratushnaya and U. Ebert, Positive and negative streamers in ambient air: modeling evolution and velocities, J. Phys. D: Appl. Phys. 41 (2008), 234005.
- R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A 32 (1985), 1799–1809.
- R. Morrow, The theory of positive glow corona, J. Phys. D: Appl. Phys. 30 (1997), 3093–3114.
- P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.
- Y. P. Raizer, Gas Discharge Physics, Springer, 2001.
- W. A. Strauss and M. Suzuki, Large amplitude stationary solutions of the Morrow model of gas ionization, Kinetic and Related Models 12 (2019), 1297–1312.
- W. A. Strauss and M. Suzuki, Steady states of gas ionization with secondary emission, Methods Appl. Anal. 29 (2022), 1–30.
- M. Suzuki and A. Tani, Time-local solvability of the Degond–Lucquin-Desreux–Morrow model for gas discharge, SIAM  Math.  Anal. 50 (2018), 5096–5118.
- M. Suzuki and A. Tani, Bifurcation analysis of the Degond–Lucquin-Desreux–Morrow model for gas discharge, J. Differential Equations 268 (2020), 4733–4755.
- Review of numerical simulation of atmospheric-pressure non-equilibrium plasmas: streamer discharges and glow discharges, Japanese J. Appl. Phys. 60 (2021), 040501.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.