Papers
Topics
Authors
Recent
Search
2000 character limit reached

Criticality and thermodynamic geometry of quantum BTZ black holes

Published 19 Mar 2024 in hep-th and gr-qc | (2403.13063v3)

Abstract: Within the framework of extended black hole thermodynamics, where the cosmological constant acts as the thermodynamic pressure and its conjugate as the thermodynamic volume, we analyze the phase structure and thermodynamic geometry of the three-dimensional quantum-corrected BTZ (qBTZ) black hole. Our results uncover two-phase transitions in the $T-S$ plane across all pressures except at a critical value. Numerical analysis reveals continuous critical phenomena along the coexistence curve, with critical exponents of 2 and 3 for the heat capacity at constant pressure and the NTG curvature, respectively. Importantly, these values notably deviate from the well-known critical exponents observed in mean-field Van der Waals (VdW) fluids, where the NTG curvature and heat capacity demonstrate discontinuous criticality. To our knowledge, our investigation is the first exploration of critical behavior in black holes incorporating consistent semiclassical backreaction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. B. P. Dolan, Class. Quant. Grav. 28, 125020 (2011), arXiv:1008.5023 [gr-qc] .
  2. D. Kubiznak and R. B. Mann, JHEP 07, 033 (2012), arXiv:1205.0559 [hep-th] .
  3. D. Kubiznak and R. B. Mann, Can. J. Phys. 93, 999 (2015), arXiv:1404.2126 [gr-qc] .
  4. C. V. Johnson, Class. Quant. Grav. 31, 205002 (2014), arXiv:1404.5982 [hep-th] .
  5. B. P. Dolan, JHEP 10, 179 (2014), arXiv:1406.7267 [hep-th] .
  6. S.-W. Wei and Y.-X. Liu, Phys. Rev. D 87, 044014 (2013), arXiv:1209.1707 [gr-qc] .
  7. A. Karch and B. Robinson, JHEP 12, 073 (2015), arXiv:1510.02472 [hep-th] .
  8. M. R. Visser, Phys. Rev. D 105, 106014 (2022), arXiv:2101.04145 [hep-th] .
  9. G. Ruppeiner, Physical Review A 20, 1608 (1979).
  10. G. Ruppeiner, Reviews of Modern Physics 67, 605 (1995).
  11. B. Mirza and M. Zamaninasab, Journal of High Energy Physics 2007, 059 (2007).
  12. S. A. H. Mansoori and B. Mirza, Eur. Phys. J. C 74, 2681 (2014), arXiv:1308.1543 [gr-qc] .
  13. S. A. Hosseini Mansoori and B. Mirza, Phys. Lett. B 799, 135040 (2019), arXiv:1905.01733 [gr-qc] .
  14. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999a), arXiv:hep-th/9906064 .
  15. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999b), arXiv:hep-ph/9905221 .
  16. A. Karch and L. Randall, JHEP 05, 008 (2001a), arXiv:hep-th/0011156 .
  17. A. Karch and L. Randall, JHEP 06, 063 (2001b), arXiv:hep-th/0105132 .
  18. H. Kudoh and Y. Kurita, Phys. Rev. D 70, 084029 (2004), arXiv:gr-qc/0406107 .
  19. C. V. Johnson and R. Nazario,   (2023), arXiv:2310.12212 [hep-th] .
  20. S. A. Hosseini Mansoori, Phys. Dark Univ. 31, 100776 (2021), arXiv:2003.13382 [gr-qc] .
  21. C. V. Johnson, Mod. Phys. Lett. A 35, 2050098 (2020), arXiv:1906.00993 [hep-th] .
  22. E. Panella and A. Svesko, JHEP 06, 127 (2023), arXiv:2303.08845 [hep-th] .
Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.