Perturbative photon escape cones in the Kerr spacetime (2403.13058v3)
Abstract: We consider the perturbative, fully explicit, analytical behaviour of photon escape cones in the Kerr spacetime. When one conducts the fully general non-perturbative Kerr analysis, one quickly finds that one must at some point appeal to numerical and/or graphical methods. Herein we find that we are able to say much more if we look at the slow rotation limit (i.e., $a \ll m$). Indeed we give explicit and tractable expressions for the first and second order (in $a$) contributions to both the shape of the escape cone, and the solid angle subtended by the escape cone. We then look at a few special cases at each order, thereby leading to explicit expressions for the black hole silhouette, expressions which are of great interest to the observational community when studying images of black hole silhouettes ("shadows").
- P. V. P. Cunha and C. A. R. Herdeiro, “Shadows and strong gravitational lensing: a brief review”, Gen. Rel. Grav. 50 (2018) no.4, 42 doi:10.1007/s10714-018-2361-9 [arXiv:1801.00860 [gr-qc]].
- S. E. Gralla, D. E. Holz and R. M. Wald, “Black Hole Shadows, Photon Rings, and Lensing Rings”, Phys. Rev. D 100 (2019) no.2, 024018 doi:10.1103/PhysRevD.100.024018 [arXiv:1906.00873 [astro-ph.HE]].
- C. Bambi, K. Freese, S. Vagnozzi and L. Visinelli, “Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image”, Phys. Rev. D 100 (2019) no.4, 044057 doi:10.1103/PhysRevD.100.044057 [arXiv:1904.12983 [gr-qc]].
- A. Abdujabbarov, M. Amir, B. Ahmedov and S. G. Ghosh, “Shadow of rotating regular black holes”, Phys. Rev. D 93 (2016) no.10, 104004 doi:10.1103/PhysRevD.93.104004 [arXiv:1604.03809 [gr-qc]].
- K. Hioki and K. i. Maeda, “Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow”, Phys. Rev. D 80 (2009), 024042 doi:10.1103/PhysRevD.80.024042 [arXiv:0904.3575 [astro-ph.HE]].
- T. Johannsen and D. Psaltis, “Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: II. Black-Hole Images”, Astrophys. J. 718 (2010), 446-454 doi:10.1088/0004-637X/718/1/446 [arXiv:1005.1931 [astro-ph.HE]].
- A. E. Broderick, T. Johannsen, A. Loeb and D. Psaltis, “Testing the No-Hair Theorem with Event Horizon Telescope Observations of Sagittarius A*”, Astrophys. J. 784 (2014), 7 doi:10.1088/0004-637X/784/1/7 [arXiv:1311.5564 [astro-ph.HE]].
- A. Broderick and A. Loeb, “Imaging the Black Hole Silhouette of M87: Implications for Jet Formation and Black Hole Spin”, Astrophys. J. 697 (2009), 1164-1179 doi:10.1088/0004-637X/697/2/1164 [arXiv:0812.0366 [astro-ph]].
- T. Johannsen, “Sgr A* and General Relativity”, Class. Quant. Grav. 33 (2016) no.11, 113001 doi:10.1088/0264-9381/33/11/113001 [arXiv:1512.03818 [astro-ph.GA]].
- V. Cardoso and L. Gualtieri, “Testing the black hole ‘no-hair’ hypothesis”, Class. Quant. Grav. 33 (2016) no.17, 174001 doi:10.1088/0264-9381/33/17/174001 [arXiv:1607.03133 [gr-qc]].
- J. L. Synge, “The Escape of Photons from Gravitationally Intense Stars”, Mon. Not. Roy. Astron. Soc. 131 (1966) no.3, 463–466.
- J. Baines and M. Visser, “Photon escape cones, physical and optical metrics, asymptotic and near-horizon physics”, Phys. Rev. D 108 (2023) no.12, 124001 doi:10.1103/PhysRevD.108.124001 [arXiv:2308.13766 [gr-qc]].
- R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett. 11 (1963), 237-238 doi:10.1103/PhysRevLett.11.237 . Republished in [26].
- R. P. Kerr, “Gravitational collapse and rotation”. Republished in [26].
- B. Carter, “Global structure of the Kerr family of gravitational fields”, Phys. Rev. 174 (1968), 1559-1571 doi:10.1103/PhysRev.174.1559
- M. Visser, “The Kerr spacetime: A brief introduction”, [arXiv:0706.0622 [gr-qc]]. Published in [26]
- D. L. Wiltshire, M. Visser and S. M. Scott, “The Kerr spacetime: Rotating black holes in general relativity”, Cambridge University Press, 2009, ISBN 978-0-521-88512-6
- J. Baines and M. Visser, “Physically motivated ansatz for the Kerr spacetime”, Class. Quant. Grav. 39 (2022) no.23, 235004 doi:10.1088/1361-6382/ac9bc5 [arXiv:2207.09034 [gr-qc]].
- J. Baines and M. Visser, “Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime”, Universe 9 (2023) no.5, 223 doi:10.3390/universe9050223 [arXiv:2303.07380 [gr-qc]].
- J. Baines, T. Berry, A. Simpson and M. Visser, “Unit-lapse versions of the Kerr spacetime”, Class. Quant. Grav. 38 (2021) no.5, 055001 doi:10.1088/1361-6382/abd071 [arXiv:2008.03817 [gr-qc]].
- J. Baines, T. Berry, A. Simpson and M. Visser, “Darboux diagonalization of the spatial 3-metric in Kerr spacetime”, Gen. Rel. Grav. 53 (2021) no.1, 3 doi:10.1007/s10714-020-02765-0 [arXiv:2009.01397 [gr-qc]].
- V. Perlick and O. Y. Tsupko, “Calculating black hole shadows: Review of analytical studies”, Phys. Rept. 947 (2022), 1-39 doi:10.1016/j.physrep.2021.10.004 [arXiv:2105.07101 [gr-qc]].
- O. Y. Tsupko, “Analytical calculation of black hole spin using deformation of the shadow”, Phys. Rev. D 95 (2017) no.10, 104058 doi:10.1103/PhysRevD.95.104058 [arXiv:1702.04005 [gr-qc]].
- A. Grenzebach, V. Perlick and C. Lämmerzahl, “Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant”, Phys. Rev. D 89 (2014) no.12, 124004 doi:10.1103/PhysRevD.89.124004 [arXiv:1403.5234 [gr-qc]].
- R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, “Constraints on thermalizing surfaces from infrared observations of supermassive black holes,” JCAP 11 (2023), 041 doi:10.1088/1475-7516/2023/11/041 [arXiv:2306.17480 [astro-ph.HE]].
- R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser,, “Constraints on horizonless objects after the EHT observation of Sagittarius A*” JCAP 08 (2022) no.08, 055 doi:10.1088/1475-7516/2022/08/055 [arXiv:2205.13555 [astro-ph.HE]].
- J. Lense and H. Thirring, “Ueber den Einfluss der Eigenrotation der Zentralkoerper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie”, Phys. Z. 19 (1918), 156-163
- B. Mashhoon, F. W. Hehl and D. S. Theiss, “On the Gravitational effects of rotating masses - The Thirring-Lense Papers”, Gen. Rel. Grav. 16 (1984), 711-750 doi:10.1007/BF00762913
- J. Baines, T. Berry, A. Simpson and M. Visser, “Painlevé–Gullstrand form of the Lense–Thirring Spacetime”, Universe 7 (2021) no.4, 105 doi:10.3390/universe7040105 [arXiv:2006.14258 [gr-qc]].
- J. Baines, T. Berry, A. Simpson and M. Visser, “Killing Tensor and Carter Constant for Painlevé–Gullstrand Form of Lense–Thirring Spacetime”, Universe 7 (2021) no.12, 473 doi:10.3390/universe7120473 [arXiv:2110.01814 [gr-qc]].
- J. Baines, T. Berry, A. Simpson and M. Visser, “Geodesics for the Painlevé–Gullstrand Form of Lense–Thirring Spacetime”, Universe 8 (2022) no.2, 115 doi:10.3390/universe8020115 [arXiv:2112.05228 [gr-qc]].
- J. Baines, T. Berry, A. Simpson and M. Visser, “Constant-r geodesics in the Painlevé–Gullstrand form of Lense–Thirring spacetime”, Gen. Rel. Grav. 54 (2022) no.8, 79 doi:10.1007/s10714-022-02963-y [arXiv:2202.09010 [gr-qc]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.