Closed universes, factorization, and ensemble averaging (2403.13047v2)
Abstract: We study closed universes in holographic theories of quantum gravity. We argue that within any fixed theory, factorization implies there is one unique closed universe state. The wave function of any state that can be prepared by the path integral is proportional to the Hartle-Hawking wave function. This unique wave function depends on the properties of the underlying holographic theory such as the energy spectrum. We show these properties explicitly in JT gravity, which is known to be dual to an ensemble of random Hamiltonians. For each member of the ensemble, the corresponding wave function is erratic as a result of the spectrum being chaotic. After ensemble averaging, we obtain smooth semi-classical wave functions as well as different closed universe states.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428 (1998) 105–114, arXiv:hep-th/9802109.
- E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
- M. Usatyuk, Z.-Y. Wang, and Y. Zhao, “Closed universes in two dimensional gravity,” arXiv:2402.00098 [hep-th].
- S. R. Coleman, “Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence,” Nucl. Phys. B 307 (1988) 867–882.
- J. M. Maldacena and L. Maoz, “Wormholes in AdS,” JHEP 02 (2004) 053, arXiv:hep-th/0401024.
- G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica wormholes and the black hole interior,” arXiv:1911.11977 [hep-th].
- D. Marolf and H. Maxfield, “Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information,” arXiv:2002.08950 [hep-th].
- D. Marolf and H. Maxfield, “Observations of Hawking radiation: the Page curve and baby universes,” JHEP 04 (2021) 272, arXiv:2010.06602 [hep-th].
- L. Susskind, “De Sitter Holography: Fluctuations, Anomalous Symmetry, and Wormholes,” Universe 7 no. 12, (2021) 464, arXiv:2106.03964 [hep-th].
- P. Saad, S. H. Shenker, and D. Stanford, “JT gravity as a matrix integral,” arXiv:1903.11115 [hep-th].
- A. Blommaert, L. V. Iliesiu, and J. Kruthoff, “Gravity factorized,” arXiv:2111.07863 [hep-th].
- J. B. Hartle and S. W. Hawking, “Wave function of the universe,” Phys. Rev. D 28 (Dec, 1983) 2960–2975. https://link.aps.org/doi/10.1103/PhysRevD.28.2960.
- J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random Matrices,” JHEP 05 (2017) 118, arXiv:1611.04650 [hep-th]. [Erratum: JHEP 09, 002 (2018)].
- T. Banks, W. Fischler, and S. Paban, “Recurrent nightmares? Measurement theory in de Sitter space,” JHEP 12 (2002) 062, arXiv:hep-th/0210160.
- J. Maldacena, G. J. Turiaci, and Z. Yang, “Two dimensional Nearly de Sitter gravity,” arXiv:1904.01911 [hep-th].
- Y. Chen, V. Gorbenko, and J. Maldacena, “Bra-ket wormholes in gravitationally prepared states,” JHEP 02 (2021) 009, arXiv:2007.16091 [hep-th].
- M. Van Raamsdonk, “Comments on wormholes, ensembles, and cosmology,” JHEP 12 (2021) 156, arXiv:2008.02259 [hep-th].
- C. Teitelboim, “Gravitation and Hamiltonian Structure in Two Space-Time Dimensions,” Phys. Lett. 126B (1983) 41–45.
- R. Jackiw, “Lower Dimensional Gravity,” Nucl. Phys. B252 (1985) 343–356.
- J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP 2016 no. 12, (2016) 12C104, arXiv:1606.01857 [hep-th].
- A. Goel, L. V. Iliesiu, J. Kruthoff, and Z. Yang, “Classifying boundary conditions in JT gravity: from energy-branes to α𝛼\alphaitalic_α-branes,” arXiv:2010.12592 [hep-th].
- A. Blommaert, L. V. Iliesiu, and J. Kruthoff, “Alpha states demystified — towards microscopic models of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography,” JHEP 08 (2022) 071, arXiv:2203.07384 [hep-th].
- D. Louis-Martinez, J. Gegenberg, and G. Kunstatter, “Exact Dirac quantization of all 2-D dilaton gravity theories,” Phys. Lett. B 321 (1994) 193–198, arXiv:gr-qc/9309018.
- J. Navarro-Salas, M. Navarro, and V. Aldaya, “Covariant phase space quantization of the Jackiw-Teitelboim model of 2-D gravity,” Phys. Lett. B 292 (1992) 19–24.
- M. Henneaux, “QUANTUM GRAVITY IN TWO-DIMENSIONS: EXACT SOLUTION OF THE JACKIW MODEL,” Phys. Rev. Lett. 54 (1985) 959–962.
- L. V. Iliesiu, J. Kruthoff, G. J. Turiaci, and H. Verlinde, “JT gravity at finite cutoff,” arXiv:2004.07242 [hep-th].
- S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell, and D. Wakeham, “Black hole microstate cosmology,” JHEP 07 (2019) 065, arXiv:1810.10601 [hep-th].
- M. Van Raamsdonk, “Cosmology from confinement?,” JHEP 03 (2022) 039, arXiv:2102.05057 [hep-th].
- S. Antonini, P. Simidzija, B. Swingle, and M. Van Raamsdonk, “Cosmology from the vacuum,” arXiv:2203.11220 [hep-th].
- S. Antonini, P. Simidzija, B. Swingle, and M. Van Raamsdonk, “Accelerating Cosmology from a Holographic Wormhole,” Phys. Rev. Lett. 130 no. 22, (2023) 221601, arXiv:2206.14821 [hep-th].
- A. Sahu, P. Simidzija, and M. Van Raamsdonk, “Bubbles of cosmology in AdS/CFT,” JHEP 11 (2023) 010, arXiv:2306.13143 [hep-th].
- S. Antonini, M. Sasieta, and B. Swingle, “Cosmology from random entanglement,” JHEP 11 (2023) 188, arXiv:2307.14416 [hep-th].
- S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68 (2003) 046005, arXiv:hep-th/0301240.
- G. Araujo-Regado, R. Khan, and A. C. Wall, “Cauchy slice holography: a new AdS/CFT dictionary,” JHEP 03 (2023) 026, arXiv:2204.00591 [hep-th].
- R. Khan, M. Usatyuk, and W. Weng, “Work in progress,”.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.