Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Noncommuting charges can remove non-stationary quantum many-body dynamics (2403.13046v3)

Published 19 Mar 2024 in quant-ph

Abstract: Studying noncommuting conserved quantities, or 'charges,' has revealed a conceptual puzzle: noncommuting charges hinder thermalization in some ways yet promote it in others. While many quantum systems thermalize according to the Eigenstate Thermalization Hypothesis (ETH), systems with 'dynamical symmetries' violate the ETH and exhibit non-stationary dynamics, preventing them from equilibrating, much less thermalizing. We demonstrate that each pair of dynamical symmetries corresponds to a specific charge. We find that introducing new charges that do not commute with existing ones disrupts these symmetries, thereby eliminating non-stationary dynamics and facilitating thermalization. We illustrate this behavior across various models, including the Hubbard model and Heisenberg spin chains. Our findings demonstrate that noncommuting charges can enhance thermalization by reducing the number of local observables that thermalize according to the ETH.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. M. Srednicki, Chaos and quantum thermalization, Physical Review E 50, 888 (1994).
  2. J. M. Deutsch, Quantum statistical mechanics in a closed system, Physical review a 43, 2046 (1991).
  3. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  4. N. Yunger Halpern, Beyond heat baths ii: Framework for generalized thermodynamic resource theories, Journal of Physics A: Mathematical and Theoretical 51, 094001 (2018).
  5. G. Manzano, J. M. Parrondo, and G. T. Landi, Non-abelian quantum transport and thermosqueezing effects, PRX Quantum 3, 010304 (2022).
  6. D. Sen, The uncertainty relations in quantum mechanics, Current Science , 203 (2014).
  7. C. J. Fewster and R. Verch, Quantum fields and local measurements, Communications in Mathematical physics 378, 851 (2020).
  8. J. Polo-Gómez, L. J. Garay, and E. Martín-Martínez, A detector-based measurement theory for quantum field theory, Physical Review D 105, 065003 (2022).
  9. A. Aspect, Bell’s inequality test: more ideal than ever, Nature 398, 189 (1999).
  10. C. Emary, N. Lambert, and F. Nori, Leggett–garg inequalities, Reports on Progress in Physics 77, 016001 (2013).
  11. S. Majidy, J. J. Halliwell, and R. Laflamme, Detecting violations of macrorealism when the original leggett-garg inequalities are satisfied, Physical Review A 103, 062212 (2021).
  12. G. Manzano, Squeezed thermal reservoir as a generalized equilibrium reservoir, Physical Review E 98, 042123 (2018).
  13. I. Marvian, Restrictions on realizable unitary operations imposed by symmetry and locality, Nature Physics 18, 283 (2022).
  14. J. Preskill, Reliable quantum computers, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).
  15. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, in Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68 (2010) pp. 13–58.
  16. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017).
  17. N. Yunger Halpern, M. E. Beverland, and A. Kalev, Noncommuting conserved charges in quantum many-body thermalization, Physical Review E 101, 042117 (2020).
  18. N. Yunger Halpern and S. Majidy, How to build hamiltonians that transport noncommuting charges in quantum thermodynamics, npj Quantum Information 8, 10 (2022).
  19. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Physical Review A 57, 120 (1998).
  20. T. Rudolph and S. S. Virmani, The two-qubit singlet/triplet measurement is universal for quantum computing given only maximally-mixed initial states, Nature Communications 14, 7800 (2023).
  21. M. H. Freedman, M. B. Hastings, and M. S. Zini, Symmetry protected quantum computation, Quantum 5, 554 (2021).
  22. B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nature Communications 10, 1730 (2019).
  23. M. Medenjak, B. Buča, and D. Jaksch, Isolated heisenberg magnet as a quantum time crystal, Physical Review B 102, 041117 (2020a).
  24. M. Medenjak, T. Prosen, and L. Zadnik, Rigorous bounds on dynamical response functions and time-translation symmetry breaking, SciPost Physics 9, 003 (2020b).
  25. K. Chinzei and T. N. Ikeda, Time crystals protected by floquet dynamical symmetry in hubbard models, Physical Review Letters 125, 060601 (2020).
  26. S. Moudgalya, N. Regnault, and B. A. Bernevig, η𝜂\etaitalic_η-pairing in hubbard models: From spectrum generating algebras to quantum many-body scars, Physical Review B 102, 085140 (2020).
  27. A. Bohm, Y. Ne’eman, and A. O. Barut, Dynamical Groups And Spectrum Generating Algebras, Vol. 2 (World Scientific, 1988).
  28. B. Gruber and T. Otsuka, Symmetries in science VII: spectrum-generating algebras and dynamic symmetries in physics (Springer Science & Business Media, 2012).
  29. B. Buča and D. Jaksch, Dissipation induced nonstationarity in a quantum gas, Physical review letters 123, 260401 (2019).
  30. B. Buča, Out-of-time-ordered crystals and fragmentation, Physical Review Letters 128, 100601 (2022).
  31. E. J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits, Physical Review Letters 53, 1515 (1984).
  32. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  33. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
  34. A. Das and S. Okubo, Lie groups and Lie algebras for physicists (World Scientific, 2014).
  35. F. Iachello, Lie algebras and applications, Vol. 12 (Springer, 2006).
  36. J. E. Humphreys, Introduction to Lie algebras and representation theory, Vol. 9 (Springer Science & Business Media, 2012).
  37. R. Campoamor-Stursberg and M. R. De Traubenberg, Group theory in physics: a practitioner’s guide (World Scientific, 2019).
  38. C. N. Yang, η𝜂\etaitalic_η pairing and off-diagonal long-range order in a hubbard model, Physical review letters 63, 2144 (1989).
  39. D. Jakubczyk and P. Jakubczyk, On the su (2)×\times× su (2) symmetry in the hubbard model, Open Physics 10, 906 (2012).
  40. R. N. Cahn, Semi-Simple Lie Algebras and Their Representations (Dover, 2006).
  41. J. D. Noh, Eigenstate thermalization hypothesis in two-dimensional x x z model with or without su (2) symmetry, Physical Review E 107, 014130 (2023).
  42. J. Siegl and J. Schliemann, Imperfect many-body localization in exchange-disordered isotropic spin chains, New Journal of Physics 25, 123002 (2023).
  43. I. Marvian, Theory of quantum circuits with abelian symmetries, arXiv preprint arXiv:2302.12466  (2023).
  44. B. Dabholkar and F. Alet, Ergodic and non-ergodic properties of disordered su (3) chains, arXiv preprint arXiv:2403.00442  (2024).
  45. A. C. Potter and R. Vasseur, Symmetry constraints on many-body localization, Physical Review B 94, 224206 (2016).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: