Papers
Topics
Authors
Recent
2000 character limit reached

Geodesic vector fields, induced contact structures and tightness in dimension three (2403.12903v1)

Published 19 Mar 2024 in math.SG and math.DG

Abstract: In this paper, we provide new and simpler proofs of two theorems of Gluck and Harrison on contact structures induced by great circle or line fibrations. Furthermore, we prove that a geodesic vector field whose Jacobi tensor is parallel along flow lines (e.g. if the underlying manifold is locally symmetric) induces a contact structure if the 'mixed' sectional curvatures are nonnegative, and if a certain nondegeneracy condition holds. Additionally, we prove that in dimension three, contact structures admitting a Reeb flow which is either periodic, isometric, or free and proper, must be universally tight. In particular, we generalise an earlier result of Geiges and the author, by showing that every contact form on $\mathbb{R}3$ whose Reeb vector field spans a line fibration is necessarily tight. Furthermore, we provide a characterisation of isometric Reeb vector fields. As an application, we recover a result of Kegel and Lange on Seifert fibrations spanned by Reeb vector fields, and we classify closed contact $3$-manifolds with isometric Reeb flows (also known as $R$-contact manifolds) up to diffeomorphism.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.