Efficient thermalization and universal quantum computing with quantum Gibbs samplers
Abstract: The preparation of thermal states of matter is a crucial task in quantum simulation. In this work, we prove that a recently introduced, efficiently implementable dissipative evolution thermalizes to the Gibbs state in time scaling polynomially with system size at high enough temperatures for any Hamiltonian that satisfies a Lieb-Robinson bound, such as local Hamiltonians on a lattice. Furthermore, we show the efficient adiabatic preparation of the associated purifications or "thermofield double" states. To the best of our knowledge, these are the first results rigorously establishing the efficient preparation of high-temperature Gibbs states and their purifications. In the low-temperature regime, we show that implementing this family of dissipative evolutions for inverse temperatures polynomial in the system's size is computationally equivalent to standard quantum computations. On a technical level, for high temperatures, our proof makes use of the mapping of the generator of the evolution into a Hamiltonian, and then connecting its convergence to that of the infinite temperature limit. For low temperature, we instead perform a perturbation at zero temperature and resort to circuit-to-Hamiltonian mappings akin to the proof of universality of quantum adiabatic computing. Taken together, our results show that a family of quasi-local dissipative evolutions efficiently prepares a large class of quantum many-body states of interest, and has the potential to mirror the success of classical Monte Carlo methods for quantum many-body systems.
- D. A. Levin and Y. Peres, Markov chains and mixing times, Vol. 107 (American Mathematical Soc., 2017).
- F. Martinelli, Lectures on probability theory and statistics (Saint-Flour, 1997) 1717, 93 (1999).
- F. G. S. L. Brandão and M. J. Kastoryano, Communications in Mathematical Physics 365, 1 (2019).
- M. J. Kastoryano and F. G. S. L. Brandão, Communications in Mathematical Physics 344, 915 (2016).
- Ángela Capel, C. Rouzé, and D. S. França, The modified logarithmic sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions (2021), arXiv:2009.11817 [quant-ph] .
- D. Zhang, J. L. Bosse, and T. Cubitt, Dissipative quantum gibbs sampling (2023), arXiv:2304.04526 [quant-ph] .
- O. Shtanko and R. Movassagh, Preparing thermal states on noiseless and noisy programmable quantum processors (2023), arXiv:2112.14688 [quant-ph] .
- C.-F. Chen, M. J. Kastoryano, and A. Gilyén, An efficient and exact noncommutative quantum gibbs sampler (2023a), arXiv:2311.09207 [quant-ph] .
- B. Nachtergaele and R. Sims, Communications in Mathematical Physics 265, 119–130 (2006).
- S. Michalakis and J. P. Zwolak, Communications in Mathematical Physics 322, 277 (2013).
- S. Bravyi, M. B. Hastings, and S. Michalakis, Journal of Mathematical Physics 51, 10.1063/1.3490195 (2010).
- See the Supplemental Material for the detailed proofs of the main results.
- M. B. Hastings and T. Koma, Communications in Mathematical Physics 265, 781 (2006).
- C.-F. (Anthony) Chen, A. Lucas, and C. Yin, Reports on Progress in Physics 86, 116001 (2023).
- D. Poulin and P. Wocjan, Physical Review Letters 103, 220502 (2009), arXiv:0905.2199 [quant-ph].
- A. N. Chowdhury, G. H. Low, and N. Wiebe, A Variational Quantum Algorithm for Preparing Quantum Gibbs States (2020), arXiv:2002.00055 [quant-ph].
- Y. Wang, G. Li, and X. Wang, Physical Review Applied 16, 054035 (2021), publisher: American Physical Society.
- C.-F. Chen and F. G. S. L. Brandão, Fast thermalization from the eigenstate thermalization hypothesis (2023), arXiv:2112.07646 [quant-ph] .
- P. Rall, C. Wang, and P. Wocjan, Quantum 7, 1132 (2023).
- E. Bilgin and S. Boixo, Physical Review Letters 105, 170405 (2010).
- Y. Ge, A. Molnár, and J. I. Cirac, Phys. Rev. Lett. 116, 080503 (2016).
- A. E. Feiguin and I. Klich, Hermitian and non-Hermitian thermal Hamiltonians (2013), arXiv:1308.0756 [cond-mat, physics:physics].
- A. Ambainis and O. Regev, An elementary proof of the quantum adiabatic theorem (2006), arXiv:quant-ph/0411152 [quant-ph] .
- J. Wu and T. H. Hsieh, Physical Review Letters 123, 220502 (2019).
- J. Martyn and B. Swingle, Physical Review A 100, 032107 (2019).
- J. Kempe, A. Kitaev, and O. Regev, SIAM Journal on Computing 35, 1070 (2006), https://doi.org/10.1137/S0097539704445226 .
- R. Oliveira and B. M. Terhal, Quantum Info. Comput. 8, 900–924 (2008).
- F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Nature Physics 5, 633–636 (2009).
- A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 65, 012322 (2001).
- K. C. Young, M. Sarovar, and R. Blume-Kohout, Phys. Rev. X 3, 041013 (2013).
- E. B. Davies, Communications in Mathematical Physics 39, 91 (1974).
- J. Borregaard, M. Christandl, and D. Stilck França, npj Quantum Information 7, 10.1038/s41534-021-00363-9 (2021).
- I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer (2017), arXiv:1711.07500 [quant-ph] .
- E. H. Lieb and D. W. Robinson, Communications in Mathematical Physics 28, 251 (1972).
- M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
- A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and quantum computation, 47 (American Mathematical Soc., 2002).
- In principle they only need to be local w.r.t. a fully connected graph, so that we can map any quantum circuit to this graph with a polynomial overhead.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.