Papers
Topics
Authors
Recent
2000 character limit reached

Exact model reduction for discrete-time conditional quantum dynamics (2403.12575v2)

Published 19 Mar 2024 in quant-ph, cs.SY, and eess.SY

Abstract: Leveraging an algebraic approach built on minimal realizations and conditional expectations in quantum probability, we propose a method to reduce the dimension of quantum filters in discrete-time, while maintaining the correct distributions on the measurement outcomes and the expectations of some relevant observable. The method is presented for general quantum systems whose dynamics depend on measurement outcomes, hinges on a system-theoretic observability analysis, and is tested on prototypical examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune et al., “Real-time quantum feedback prepares and stabilizes photon number states,” Nature, vol. 477, no. 7362, pp. 73–77, 2011.
  2. G. Cardona, A. Sarlette, and P. Rouchon, “Exponential stabilization of quantum systems under continuous non-demolition measurements,” Automatica, vol. 112, p. 108719, 2020.
  3. N. H. Amini and J. E. Gough, “The estimation lie algebra associated with quantum filters,” Open Systems & Information Dynamics, vol. 26, no. 02, p. 1950004, 2019.
  4. I. Ramadan, N. H. Amini, and P. Mason, “Exact solution and projection filters for open quantum systems subject to imperfect measurements,” IEEE Control Systems Letters, vol. 7, pp. 949–954, 2022.
  5. S. Bolognani and F. Ticozzi, “Engineering stable discrete-time quantum dynamics via a canonical qr decomposition,” IEEE Transactions on Automatic Control, vol. 55, no. 12, pp. 2721–2734, 2010.
  6. L. Bouten, R. Van Handel, and M. R. James, “A discrete invitation to quantum filtering and feedback control,” SIAM review, vol. 51, no. 2, pp. 239–316, 2009.
  7. T. Benoist, M. Fraas, Y. Pautrat, and C. Pellegrini, “Invariant measure for quantum trajectories,” Probability Theory and Related Fields, vol. 174, pp. 307–334, 2019.
  8. S. Attal, F. Petruccione, and I. Sinayskiy, “Open quantum walks on graphs,” Physics Letters A, vol. 376, no. 18, pp. 1545–1548, 2012.
  9. S. Apers, A. Sarlette, and F. Ticozzi, “Simulation of quantum walks and fast mixing with classical processes,” Physical Review A, vol. 98, no. 3, p. 032115, 2018.
  10. J. Barry, D. T. Barry, and S. Aaronson, “Quantum partially observable markov decision processes,” Physical Review A, vol. 90, no. 3, p. 032311, 2014.
  11. H. Ito, S.-I. Amari, and K. Kobayashi, “Identifiability of hidden Markov information sources and their minimum degrees of freedom,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 324–333, Mar. 1992.
  12. A. Schonhuth, “Simple and efficient solution of the identifiability problem for hidden markov sources and quantum random walks,” in 2008 International Symposium on Information Theory and Its Applications.   IEEE, 2008, pp. 1–6.
  13. T. Grigoletto and F. Ticozzi, “Algebraic reduction of hidden markov models,” IEEE Transactions on Automatic Control, pp. 1–16, 2023.
  14. ——, “Model reduction for quantum systems: Discrete-time quantum walks and open markov dynamics,” arXiv preprint arXiv:2307.06319, 2023, submitted to IEEE Transaction on Information Theory.
  15. M. Tokieda, C. Elouard, A. Sarlette, and P. Rouchon, “Complete positivity violation of the reduced dynamics in higher-order quantum adiabatic elimination,” arXiv preprint arXiv:2303.04495, 2023.
  16. D. D’Alessandro, “On quantum state observability and measurement,” J. of Phys. A: Mathematical and General, vol. 36, no. 37, pp. 9721–9735, 2003.
  17. A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 3065–3072, 2001.
  18. G. Baggio, F. Ticozzi, and L. Viola, “Quantum state preparation by controlled dissipation in finite time: From classical to quantum controllers,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).   IEEE, 2012, pp. 1072–1077.
  19. A. Somaraju, I. Dotsenko, C. Sayrin, and P. Rouchon, “Design and stability of discrete-time quantum filters with measurement imperfections,” in 2012 American Control Conference (ACC).   IEEE, 2012, pp. 5084–5089.
  20. H. Amini, R. A. Somaraju, I. Dotsenko, C. Sayrin, M. Mirrahimi, and P. Rouchon, “Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays,” Automatica, vol. 49, no. 9, pp. 2683–2692, 2013.
  21. A. Mitra and M. Farkas, “Compatibility of quantum instruments,” Phys. Rev. A, vol. 105, p. 052202, May 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.105.052202
  22. B. HO and R. E. Kálmán, “Effective construction of linear state-variable models from input/output functions,” at-Automatisierungstechnik, vol. 14, no. 1-12, pp. 545–548, 1966.
  23. M. M. Wolf, “Quantum channels & operations: Guided tour,” 2012, lecture notes available at https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=afa58291b0b8bd47504acb1ab8f553f0b37685cf.
  24. M. Mirrahimi, I. Dotsenko, and P. Rouchon, “Feedback generation of quantum fock states by discrete qnd measures,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.   IEEE, 2009, pp. 1451–1456.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: