Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Digital Twin for Efficient 6G Network Orchestration via Adaptive Attribute Selection and Scalable Network Modeling (2403.12398v1)

Published 19 Mar 2024 in cs.NI

Abstract: Achieving a holistic and long-term understanding through accurate network modeling is essential for orchestrating future networks with increasing service diversity and infrastructure complexities. However, due to unselective data collection and uniform processing, traditional modeling approaches undermine the efficacy and timeliness of network orchestration. Additionally, temporal disparities arising from various modeling delays further impair the centralized decision-making with distributed models. In this paper, we propose a new hierarchical digital twin paradigm adapting to real-time network situations for problem-centered model construction. Specifically, we introduce an adaptive attribute selection mechanism that evaluates the distinct modeling values of diverse network attributes, considering their relevance to current network scenarios and inherent modeling complexity. By prioritizing critical attributes at higher layers, an efficient evaluation of network situations is achieved to identify target areas. Subsequently, scalable network modeling facilitates the inclusion of all identified elements at the lower layers, where more fine-grained digital twins are developed to generate targeted solutions for user association and power allocation. Furthermore, virtual-physical domain synchronization is implemented to maintain accurate temporal alignment between the digital twins and their physical counterparts, spanning from the construction to the utilization of the proposed paradigm. Extensive simulations validate the proposed approach, demonstrating its effectiveness in efficiently identifying pressing issues and delivering network orchestration solutions in complex 6G HetNets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. X. Wang, J. Mei, S. Cui, C.-X. Wang, and X. S. Shen, “Realizing 6G: The operational goals, enabling technologies of future networks, and value-oriented intelligent multi-dimensional multiple access,” IEEE Netw., vol. 37, no. 1, pp. 10–17, 2023.
  2. P. Jia and X. Wang, “A new virtual network topology-based digital twin for spatial-temporal load-balanced user association in 6G HetNets,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3080–3094, 2023.
  3. W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “QTCP: Adaptive congestion control with reinforcement learning,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 3, pp. 445–458, 2019.
  4. O. Ahmed, F. Ren, A. Hawbani, and Y. Al-Sharabi, “Energy optimized congestion control-based temperature aware routing algorithm for software defined wireless body area networks,” IEEE Access, vol. 8, pp. 41 085–41 099, 2020.
  5. L. Yang, Y. Zou, S. Shen, P. Wang, D. Yu, and X. Cheng, “A fault-tolerant communication algorithm for age-of-information optimization in DITENs,” IEEE Trans. Commun., pp. 1–14, 2023.
  6. A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision and research directions for 6G and beyond,” IEEE Commun. Mag., 2023.
  7. H. Xu, J. Wu, Q. Pan, X. Guan, and M. Guizani, “A survey on digital twin for industrial Internet of Things: Applications, technologies and tools,” IEEE Commun. Surv. Tutor., vol. 25, no. 4, pp. 2569–2598, 2023.
  8. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 1–30, 2022.
  9. B. Agarwal, M. A. Togou, M. Marco, and G.-M. Muntean, “A comprehensive survey on radio resource management in 5G HetNets: Current solutions, future trends and open issues,” IEEE Commun. Surv. Tutor., vol. 24, no. 4, pp. 2495–2534, 2022.
  10. A. Alwarafy, M. Abdallah, B. S. Çiftler, A. Al-Fuqaha, and M. Hamdi, “The frontiers of deep reinforcement learning for resource management in future wireless HetNets: Techniques, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 3, pp. 322–365, 2022.
  11. X. Wang, P. Jia, X. Shen, and H. V. Poor, “Intelligent and low overhead network synchronization for large-scale industrial IoT systems in the 6G era,” IEEE Netw., vol. 37, no. 3, pp. 76–84, 2023.
  12. X. Huan, H. He, T. Wang, Q. Wu, and H. Hu, “A timestamp-free time synchronization scheme based on reverse asymmetric framework for practical resource-constrained wireless sensor networks,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6109–6121, 2022.
  13. P. Jia, X. Wang, and X. Shen, “Accurate and efficient digital twin construction using concurrent end-to-end synchronization and multi-attribute data resampling,” IEEE Internet Things J., vol. 10, no. 6, pp. 4857–4870, 2022.
  14. H. Zhang, X. Ma, X. Liu, L. Li, and K. Sun, “GNN-based power allocation and user association in digital twin network for the terahertz band,” IEEE J. Sel. Areas Commun., 2023.
  15. Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu, “A survey on digital twins: architecture, enabling technologies, security and privacy, and future prospects,” IEEE Internet Things J., 2023.
  16. J. Zheng, T. H. Luan, Y. Zhang, R. Li, Y. Hui, L. Gao, and M. Dong, “Data synchronization in vehicular digital twin network: A game theoretic approach,” IEEE Trans. Wirel. Commun., vol. 22, no. 11, pp. 7635–7647, 2023.
  17. P. Jia, X. Wang, and X. Shen, “Digital twin enabled intelligent network orchestration for 6G: A dual-layered approach,” in Proc. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2023, pp. 1–6.
  18. J. Chen, L. Zhang, Y.-C. Liang, and S. Ma, “Optimal resource allocation for multicarrier NOMA in short packet communications,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2141–2156, 2019.
  19. L.-T. Hsieh, H. Liu, Y. Guo, and R. Gazda, “Deep reinforcement learning-based task assignment for cooperative mobile edge computing,” IEEE Trans. Mob. Comput., pp. 1–15, 2023.
  20. Y. Xiao, J. Liu, J. Wu, and N. Ansari, “Leveraging deep reinforcement learning for traffic engineering: A survey,” IEEE Commun. Surv. Tutor., vol. 23, no. 4, pp. 2064–2097, 2021.
  21. J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou, “The appropriate use of approximate entropy and sample entropy with short data sets,” Ann. Biomed. Eng., vol. 41, pp. 349–365, 2013.
  22. L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang, “A survey on causal inference,” Trans. Knowl. Discov. Data, vol. 15, no. 5, pp. 1–46, 2021.
  23. Z. Wang, Z. Li, R. Wang, F. Nie, and X. Li, “Large graph clustering with simultaneous spectral embedding and discretization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 12, pp. 4426–4440, 2020.
  24. E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions,” J. Math. Psychol., vol. 85, pp. 1–16, 2018.
  25. F. Fang, G. Ye, H. Zhang, J. Cheng, and V. C. M. Leung, “Energy-efficient joint user association and power allocation in a heterogeneous network,” IEEE Trans. Wirel. Commun., vol. 19, no. 11, pp. 7008–7020, 2020.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.