Exact Thermal Eigenstates of Nonintegrable Spin Chains at Infinite Temperature (2403.12330v4)
Abstract: The eigenstate thermalization hypothesis (ETH) plays a major role in explaining thermalization of isolated quantum many-body systems. However, there has been no proof of the ETH in realistic systems due to the difficulty in the theoretical treatment of thermal energy eigenstates of nonintegrable systems. Here, we write down analytically thermal eigenstates of nonintegrable spin chains. We consider a class of theoretically tractable volume-law states, which we call entangled antipodal pair (EAP) states. These states are thermal, in the most fundamental sense that they are indistinguishable from the Gibbs state with respect to all local observables, with infinite temperature. We then identify Hamiltonians having the EAP state as an eigenstate and rigorously show that some of these Hamiltonians are nonintegrable. Furthermore, a thermal pure state at an arbitrary temperature is obtained by the imaginary time evolution of an EAP state. Our results offer a potential avenue for providing a provable example of the ETH.
- C. Gogolin and J. Eisert, Rep. Prog. Phys. 79, 056001 (2016).
- J. von Neumann, Z. Phys. 57, 30 (1929).
- J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
- H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).
- W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89, 042112 (2014).
- F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57, 143 (2008).
- U. Schollwöck, Ann. Phys. 326, 96 (2011).
- M. Fannes, B. Nachtergaele, and R. F. Werner, Europhys. Lett. 10, 633 (1989).
- G. Vitagliano, A. Riera, and J. I. Latorre, New J. Phys. 12, 113049 (2010).
- G. RamÃrez, J. RodrÃguez-Laguna, and G. Sierra, J. Stat. Mech. 2014, P10004 (2014).
- G. RamÃrez, J. RodrÃguez-Laguna, and G. Sierra, J. Stat. Mech. 2015, P06002 (2015).
- V. Bettaque and B. Swingle, NoRA: A Tensor Network Ansatz for Volume-Law Entangled Equilibrium States of Highly Connected Hamiltonians (2023).
- See Supplemental Material for the detailed derivations and discussion.
- H. Tasaki, Macroscopic Irreversibility in Quantum Systems: ETH and Equilibration in a Free Fermion Chain (2024).
- There are only two solutions whose Hamiltonians are noninteracting [19].
- R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, San Diego, 1982).
- V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993).
- M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 1999).
- S. Sugiura and A. Shimizu, Phys. Rev. Lett. 111, 010401 (2013).
- Y. Chiba, Phys. Rev. B 109, 035123 (2024).
- N. Shiraishi, Europhys. Lett. 128, 17002 (2019).
- M. L. Mehta, Random Matrices, 3rd ed. (Academic Press, New York, 2004).
- To remove the possibility of accidental discrete symmetries, we avoid eigenspace of special wavenumber such as 00 and π𝜋\piitalic_π.
- We can always take Jzy=0superscript𝐽𝑧𝑦0J^{zy}=0italic_J start_POSTSUPERSCRIPT italic_z italic_y end_POSTSUPERSCRIPT = 0 by an approprite rotation around y𝑦yitalic_y axis.
- H. Araki, Commun. Math. Phys. 14, 120 (1969).
- H. Araki, Commun. Math. Phys. 44, 1 (1975).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.