Papers
Topics
Authors
Recent
2000 character limit reached

Multiplexed quantum state transfer in waveguides

Published 18 Mar 2024 in quant-ph | (2403.12222v2)

Abstract: In this article, we consider a realistic waveguide implementation of a quantum network that serves as a testbed to show how to maximize the storage and manipulation of quantum information in QED setups. We analyze two approaches using wavepacket engineering and quantum state transfer protocols. First, we propose and design a family of orthogonal photons in the time domain. These photons allow for a selective interaction with distinct targeted qubits. Yet, mode multiplexing employing resonant nodes is largely spoiled by cross-talk effects. This motivates the second approach, namely, frequency multiplexing. Here we explore the limits of frequency multiplexing through the waveguide, analyzing its capabilities to host and faithfully transmit photons of different frequencies within a given bandwidth. We perform detailed one- and two-photon simulations and provide theoretical bounds for the fidelity of coherent quantum state transfer protocols under realistic conditions. Our results show that state-of-the-art experiments can employ dozens of multiplexed photons with global fidelities fulfilling the requirements imposed by fault-tolerant quantum computing. This is with the caveat that the conditions for single-photon fidelity are met.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. J. P. Dowling and G. J. Milburn, Quantum technology: the second quantum revolution, Phil. Trans. R. Soc. A 361, 1655 (2003).
  2. S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, 6412 (2018).
  3. G. F. Peñas, R. Puebla, and J. J. García-Ripoll, Improving quantum state transfer: correcting non-markovian and distortion effects, Quantum Sci. Technol. 8, 045026 (2023).
  4. F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum information processing: a review, Rep. Prog. Phys. 82, 016001 (2018).
  5. D. J. Richardson, J. M. Fini, and L. E. Nelson, Space-division multiplexing in optical fibres, Nat. Phot. 7, 354 (2013).
  6. David M. Pozar, Microwave Engineering (John Wiley & Sons, 2012).
  7. C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985).
  8. Removing the sign dependence of ξ⁢(t)𝜉𝑡\xi(t)italic_ξ ( italic_t ) from θ⁢(t)𝜃𝑡\theta(t)italic_θ ( italic_t ) eases the calculations, as otherwise θ⁢(t)𝜃𝑡\theta(t)italic_θ ( italic_t ) may undergo discontinuous jumps whenever ξ⁢(t)𝜉𝑡\xi(t)italic_ξ ( italic_t ) changes sign.
  9. M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Physics Letters A 303, 249 (2002).
  10. L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Physics Letters A 367, 47 (2007).
  11. J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Tech. Rep. (1995).
  12. J. J. G. Ripoll, Quantum Information and Quantum Optics with Superconducting Circuits (Cambridge University Press, 2022).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 24 likes about this paper.