Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Gaia's binary star renaissance (2403.12146v2)

Published 18 Mar 2024 in astro-ph.SR, astro-ph.GA, and astro-ph.HE

Abstract: Stellar multiplicity is among the oldest and richest problems in astrophysics. Binary stars are a cornerstone of stellar mass and radius measurements that underpin modern stellar evolutionary models. Binaries are the progenitors of many of the most interesting and exotic astrophysical phenomena, ranging from type Ia supernovae to gamma ray bursts, hypervelocity stars, and most detectable stellar black holes. They are also ubiquitous, accounting for about half of all stars in the Universe. In the era of gravitational waves, wide-field surveys, and open-source stellar models, binaries are coming back stronger than a nineties trend. Much of the progress in the last decade has been enabled by the Gaia mission, which provides high-precision astrometry for more than a billion stars in the Milky Way. The Gaia data probe a wider range of binary separations and mass ratios than most previous surveys, enabling both an improved binary population census and discovery of rare objects. I summarize recent results in the study of binary stars brought about by Gaia, focusing in particular on developments related to wide ($a \gtrsim 100$ au) binaries, evidence of binarity from astrometric noise and proper motion anomaly, astrometric and radial velocity orbits from Gaia DR3, and binaries containing non-accreting compact objects. Limitations of the Gaia data, the importance of ground-based follow-up, and anticipated improvements with Gaia DR4 are also discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (216)
  1. Informing the Cataclysmic Variable Sequence from Gaia Data: The Orbital-period-Color-Absolute-magnitude Relationship. ApJ 938, 46. doi:10.3847/1538-4357/ac87ab.
  2. Disentangling cataclysmic variables in Gaia’s HR diagram. MNRAS 492, L40–L44. doi:10.1093/mnrasl/slz181, arXiv:1912.01531.
  3. Normal and abnormal binary frequencies. ARA&A 21, 343–372. doi:10.1146/annurev.aa.21.090183.002015.
  4. Binary parameters from astrometric and spectroscopic errors - candidate hierarchical triples and massive dark companions in Gaia DR3. MNRAS 516, 3661–3684. doi:10.1093/mnras/stac2532, arXiv:2206.04392.
  5. Weighing the Darkness. II. Astrometric Measurement of Partial Orbits with Gaia. ApJ 946, 111. doi:10.3847/1538-4357/acbb5f, arXiv:2110.05549.
  6. Wide binaries in Tycho-Gaia: search method and the distribution of orbital separations. MNRAS 472, 675–699. doi:10.1093/mnras/stx2000, arXiv:1704.07829.
  7. Measuring the Mass–Radius Relation of White Dwarfs Using Wide Binaries. ApJ 963, 17. doi:10.3847/1538-4357/ad2168.
  8. Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View. ApJ 854, 147. doi:10.3847/1538-4357/aaa765, arXiv:1711.00660.
  9. Maximum mass of objects that constitute unseen disk material. ApJ 290, 15–20. doi:10.1086/162953.
  10. A new line on the wide binary test of gravity. MNRAS 487, 5291–5303. doi:10.1093/mnras/stz1551, arXiv:1902.01857.
  11. Strong constraints on the gravitational law from Gaia DR3 wide binaries. MNRAS 527, 4573–4615. doi:10.1093/mnras/stad3393, arXiv:2311.03436.
  12. Testing gravity with wide binary stars like α𝛼\alphaitalic_α Centauri. MNRAS 480, 2660–2688. doi:10.1093/mnras/sty2007, arXiv:1805.12273.
  13. Features of Gaia DR3 spectroscopic binaries I. Tidal circularization of main-sequence stars. MNRAS 522, 1184–1195. doi:10.1093/mnras/stad999, arXiv:2304.00043.
  14. Gaia spectroscopic orbits validated with LAMOST and GALAH radial velocities. MNRAS 517, 3888–3903. doi:10.1093/mnras/stac2928, arXiv:2207.08832.
  15. Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation. MNRAS 392, 590–616. doi:10.1111/j.1365-2966.2008.14106.x, arXiv:0811.0163.
  16. The statistical properties of stars and their dependence on metallicity. MNRAS 484, 2341–2361. doi:10.1093/mnras/stz103, arXiv:1901.03713.
  17. Accretion during binary star formation - II. Gaseous accretion and disc formation. MNRAS 285, 33–48. doi:10.1093/mnras/285.1.33.
  18. Masses of White Dwarf Binary Companions to Type Ia Supernovae Measured from Runaway Velocities. ApJL 923, L34. doi:10.3847/2041-8213/ac432d, arXiv:2112.03189.
  19. Remnants of Subdwarf Helium Donor Stars Ejected from Close Binaries with Thermonuclear Supernovae. ApJ 887, 68. doi:10.3847/1538-4357/ab4ea4, arXiv:1906.08941.
  20. New evidence about HW Vir’s circumbinary planets from Hipparcos-Gaia astrometry and a reanalysis of the eclipse timing variations using nested sampling. MNRAS 526, 2241–2250. doi:10.1093/mnras/stad2794, arXiv:2309.05716.
  21. Unresolved stellar companions with Gaia DR2 astrometry. MNRAS 496, 1922–1940. doi:10.1093/mnras/staa1522, arXiv:2003.05467.
  22. Astrometric microlensing with the GAIA satellite. MNRAS 331, 649–665. doi:10.1046/j.1365-8711.2002.05222.x, arXiv:astro-ph/0112243.
  23. On the variations of the proper motions of Procyon and Sirius. MNRAS 6, 136–141. doi:10.1093/mnras/6.11.136.
  24. A wide binary trigger for white dwarf pollution. MNRAS 454, 53–63. doi:10.1093/mnras/stv1913, arXiv:1508.05715.
  25. Lessons from the curious case of the ‘fastest’ star in Gaia DR2. MNRAS 486, 2618–2630. doi:10.1093/mnras/stz253, arXiv:1901.10460.
  26. The Hipparcos-Gaia Catalog of Accelerations. ApJS 239, 31. doi:10.3847/1538-4365/aaec06, arXiv:1811.07283.
  27. The Hipparcos-Gaia Catalog of Accelerations: Gaia EDR3 Edition. ApJS 254, 42. doi:10.3847/1538-4365/abf93c, arXiv:2105.11662.
  28. Precise Dynamical Masses of Directly Imaged Companions from Relative Astrometry, Radial Velocities, and Hipparcos-Gaia DR2 Accelerations. AJ 158, 140. doi:10.3847/1538-3881/ab04a8, arXiv:1811.07285.
  29. The runaway velocity of the white dwarf companion in the double detonation scenario of supernovae. The Open Journal of Astrophysics 7, 7. doi:10.21105/astro.2310.16554, arXiv:2310.16554.
  30. Revealing Black Holes with Gaia. ApJL 850, L13. doi:10.3847/2041-8213/aa97d5, arXiv:1710.04657.
  31. A Systematic Search of Zwicky Transient Facility Data for Ultracompact Binary LISA-detectable Gravitational-wave Sources. ApJ 905, 32. doi:10.3847/1538-4357/abc261, arXiv:2009.02567.
  32. Breakdown of the Newton-Einstein Standard Gravity at Low Acceleration in Internal Dynamics of Wide Binary Stars. ApJ 952, 128. doi:10.3847/1538-4357/ace101, arXiv:2305.04613.
  33. Robust Evidence for the Breakdown of Standard Gravity at Low Acceleration from Statistically Pure Binaries Free of Hidden Companions. ApJ 960, 114. doi:10.3847/1538-4357/ad0ed5, arXiv:2309.10404.
  34. A Noninteracting Galactic Black Hole Candidate in a Binary System with a Main-sequence Star. AJ 166, 6. doi:10.3847/1538-3881/accf21, arXiv:2210.05003.
  35. Gaia May Detect Hundreds of Well-characterized Stellar Black Holes. ApJ 931, 107. doi:10.3847/1538-4357/ac60a5, arXiv:2110.05979.
  36. Binary stars in the new millennium. Progress in Particle and Nuclear Physics 134, 104083. doi:10.1016/j.ppnp.2023.104083, arXiv:2311.11454.
  37. The Zwicky Transient Facility Catalog of Periodic Variable Stars. ApJS 249, 18. doi:10.3847/1538-4365/ab9cae, arXiv:2005.08662.
  38. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models. ApJ 823, 102. doi:10.3847/0004-637X/823/2/102, arXiv:1604.08592.
  39. A Possible Alignment Between the Orbits of Planetary Systems and their Visual Binary Companions. AJ 163, 207. doi:10.3847/1538-3881/ac517f, arXiv:2202.00042.
  40. The distribution of relative proper motions of wide binaries in Gaia DR2: MOND or multiplicity? MNRAS 491, L72–L75. doi:10.1093/mnrasl/slz161, arXiv:1910.10256.
  41. Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES): A Catalog of Very Wide, Low-mass Pairs. AJ 139, 2566–2586. doi:10.1088/0004-6256/139/6/2566, arXiv:1004.2755.
  42. Young Star Clusters Dominate the Production of Detached Black Hole-Star Binaries. arXiv e-prints , arXiv:2306.13121doi:10.48550/arXiv.2306.13121, arXiv:2306.13121.
  43. Stellar Multiplicity. ARA&A 51, 269–310. doi:10.1146/annurev-astro-081710-102602, arXiv:1303.3028.
  44. Orbital architectures of planet-hosting binaries - II. Low mutual inclinations between planetary and stellar orbits. MNRAS 512, 648–660. doi:10.1093/mnras/stac306, arXiv:2202.00013.
  45. Multiplicity among Solar Type Stars in the Solar Neighbourhood - Part Two - Distribution of the Orbital Elements in an Unbiased Sample. A&A 248, 485.
  46. The Distribution of Visual Binaries with Two Bright Components. ApJ 347, 998. doi:10.1086/168190.
  47. The geometric challenge of testing gravity with wide binaries. MNRAS 482, 5018–5022. doi:10.1093/mnras/sty3109, arXiv:1810.13397.
  48. The Gravitational Redshift of Solar-type Stars from Gaia DR3 Wide Binaries. Research Notes of the American Astronomical Society 6, 137. doi:10.3847/2515-5172/ac7c16, arXiv:2206.11092.
  49. Magnetic braking saturates: evidence from the orbital period distribution of low-mass detached eclipsing binaries from ZTF. MNRAS 517, 4916–4939. doi:10.1093/mnras/stac2945, arXiv:2208.05488.
  50. Imprints of white dwarf recoil in the separation distribution of Gaia wide binaries. MNRAS 480, 4884–4902. doi:10.1093/mnras/sty2186, arXiv:1807.06011.
  51. The wide binary fraction of solar-type stars: emergence of metallicity dependence at a ¡ 200 au. MNRAS 482, L139–L144. doi:10.1093/mnrasl/sly206, arXiv:1809.06860.
  52. What are the spectroscopic binaries with high-mass functions near the Gaia DR3 main sequence? MNRAS 515, 1266–1275. doi:10.1093/mnras/stac1797, arXiv:2206.07723.
  53. A red giant orbiting a black hole. MNRAS 521, 4323–4348. doi:10.1093/mnras/stad799, arXiv:2302.07880.
  54. A million binaries from Gaia eDR3: sample selection and validation of Gaia parallax uncertainties. MNRAS 506, 2269–2295. doi:10.1093/mnras/stab323, arXiv:2101.05282.
  55. A Sun-like star orbiting a black hole. MNRAS 518, 1057–1085. doi:10.1093/mnras/stac3140, arXiv:2209.06833.
  56. Birth of the ELMs: a ZTF survey for evolved cataclysmic variables turning into extremely low-mass white dwarfs. MNRAS 508, 4106–4139. doi:10.1093/mnras/stab2583, arXiv:2108.04255.
  57. Discovery of an equal-mass ‘twin’ binary population reaching 1000 + au separations. MNRAS 489, 5822–5857. doi:10.1093/mnras/stz2480, arXiv:1906.10128.
  58. The fastest stars in the Galaxy. The Open Journal of Astrophysics 6, 28. doi:10.21105/astro.2306.03914, arXiv:2306.03914.
  59. A 1.9⁢M⊙1.9subscript𝑀direct-product1.9\,M_{\odot}1.9 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT neutron star candidate in a 2-year orbit. arXiv e-prints , arXiv:2402.06722doi:10.48550/arXiv.2402.06722, arXiv:2402.06722.
  60. ESA (Ed.), 1997. The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission. volume 1200 of ESA Special Publication.
  61. Gaia Data Release 2. Photometric content and validation. A&A 616, A4. doi:10.1051/0004-6361/201832756, arXiv:1804.09368.
  62. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Reviews in Relativity 15, 10. doi:10.12942/lrr-2012-10, arXiv:1112.3960.
  63. Enhancement of double-close-binary quadruples. MNRAS 511, 3881–3894. doi:10.1093/mnras/stac309, arXiv:2202.00021.
  64. Astrometry and Precise Radial Velocities Yield a Complete Orbital Solution for the Nearby Eccentric Brown Dwarf LHS 1610 b. arXiv e-prints , arXiv:2310.07827doi:10.48550/arXiv.2310.07827, arXiv:2310.07827.
  65. Precise Ages of Field Stars from White Dwarf Companions. ApJ 870, 9. doi:10.3847/1538-4357/aaee74, arXiv:1802.06663.
  66. Searching for Compact Objects in Binaries with Gaia DR3. ApJ 940, 126. doi:10.3847/1538-4357/ac9b4c, arXiv:2207.05434.
  67. Weighing Stellar-Mass Black Holes with Gaia, in: Turon, C., O’Flaherty, K.S., Perryman, M.A.C. (Eds.), The Three-Dimensional Universe with Gaia, p. 573. doi:10.48550/arXiv.astro-ph/0410516, arXiv:astro-ph/0410516.
  68. Gaia Data Release 3. Stellar multiplicity, a teaser for the hidden treasure. A&A 674, A34. doi:10.1051/0004-6361/202243782, arXiv:2206.05595.
  69. Gaia Data Release 2. Summary of the contents and survey properties. A&A 616, A1. doi:10.1051/0004-6361/201833051, arXiv:1804.09365.
  70. The Gaia mission. A&A 595, A1. doi:10.1051/0004-6361/201629272, arXiv:1609.04153.
  71. Gaia Early Data Release 3. The Gaia Catalogue of Nearby Stars. A&A 649, A6. doi:10.1051/0004-6361/202039498, arXiv:2012.02061.
  72. Gaia Focused Product Release: Radial velocity time series of long-period variables. A&A 680, A36. doi:10.1051/0004-6361/202347287, arXiv:2310.06051.
  73. Gaia Data Release 2 distances and peculiar velocities for Galactic black hole transients. MNRAS 485, 2642–2655. doi:10.1093/mnras/stz438, arXiv:1804.11349.
  74. SDSS J124043.01+671034.68: the partially burned remnant of a low-mass white dwarf that underwent thermonuclear ignition? MNRAS 496, 4079–4086. doi:10.1093/mnras/staa1761, arXiv:2006.07381.
  75. The white dwarf binary pathways survey – X. Gaia orbits for known UV excess binaries. arXiv e-prints , arXiv:2403.07985doi:10.48550/arXiv.2403.07985, arXiv:2403.07985.
  76. A Triple Scenario for the Formation of Wide Black Hole Binaries Such As Gaia BH1. arXiv e-prints , arXiv:2312.03066doi:10.48550/arXiv.2312.03066, arXiv:2312.03066.
  77. A Mass-Magnitude Relation for Low-mass Stars Based on Dynamical Measurements of Thousands of Binary Star Systems. AJ 164, 164. doi:10.3847/1538-3881/ac8cf7, arXiv:2208.12112.
  78. Search for dormant black holes in ellipsoidal variables - II. A binary modified minimum mass ratio. MNRAS 504, 2115–2121. doi:10.1093/mnras/stab1047, arXiv:2104.06418.
  79. Gaia Data Release 3. Ellipsoidal variables with possible black hole or neutron star secondaries. A&A 674, A19. doi:10.1051/0004-6361/202243626, arXiv:2206.06032.
  80. Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations. MNRAS 518, 4693–4712. doi:10.1093/mnras/stac3268, arXiv:2208.02844.
  81. Gaia Data Release 3. Astrometric binary star processing. A&A 674, A9. doi:10.1051/0004-6361/202243969, arXiv:2206.05726.
  82. A Deficit of Massive White Dwarfs in Gaia Astrometric Binaries. arXiv e-prints , arXiv:2311.17145doi:10.48550/arXiv.2311.17145, arXiv:2311.17145.
  83. Eccentricity dynamics of wide binaries – II. The effect of stellar encounters and constraints on formation channels. arXiv e-prints , arXiv:2311.04352doi:10.48550/arXiv.2311.04352, arXiv:2311.04352.
  84. Gaia data processing. SEAPipe: The source environment analysis pipeline. A&A 679, A158. doi:10.1051/0004-6361/202347371, arXiv:2310.03562.
  85. The 2001 US Naval Observatory Double Star CD-ROM. II. The Fifth Catalog of Orbits of Visual Binary Stars. AJ 122, 3472–3479. doi:10.1086/323921.
  86. The SUPERWIDE Catalog: A Catalog of 99,203 Wide Binaries Found in Gaia and Supplemented by the SUPERBLINK High Proper Motion Catalog. ApJS 247, 66. doi:10.3847/1538-4365/ab79a6, arXiv:2002.08850.
  87. Testing White Dwarf Age Estimates Using Wide Double White Dwarf Binaries from Gaia EDR3. ApJ 934, 148. doi:10.3847/1538-4357/ac78d9, arXiv:2206.00025.
  88. Internal kinematics of Gaia DR3 wide binaries: anomalous behaviour in the low acceleration regime. MNRAS 525, 1401–1415. doi:10.1093/mnras/stad2306, arXiv:2304.07322.
  89. On the methodological shortcomings in the Wide Binary Gravity test of Banik et al. 2024. arXiv e-prints , arXiv:2312.03162doi:10.48550/arXiv.2312.03162, arXiv:2312.03162.
  90. Internal kinematics of Gaia eDR3 wide binaries. MNRAS 509, 2304–2317. doi:10.1093/mnras/stab3038, arXiv:2107.14797.
  91. Challenging a Newtonian prediction through Gaia wide binaries. International Journal of Modern Physics D 28, 1950101. doi:10.1142/S0218271819501013, arXiv:1810.08696.
  92. Account of the Changes That Have Happened, during the Last Twenty-Five Years, in the Relative Situation of Double-Stars; With an Investigation of the Cause to Which They Are Owing. Philosophical Transactions of the Royal Society of London Series I 93, 339–382.
  93. Gaia Data Release 3. Gaia scan-angle-dependent signals and spurious periods. A&A 674, A25. doi:10.1051/0004-6361/202245353, arXiv:2212.11971.
  94. Gaia Data Release 3. Astrometric orbit determination with Markov chain Monte Carlo and genetic algorithms: Systems with stellar, sub-stellar, and planetary mass companions. A&A 674, A10. doi:10.1051/0004-6361/202244161, arXiv:2206.05439.
  95. Measuring the initial-final mass relation using wide double white dwarf binaries from Gaia DR3. MNRAS 527, 9061–9117. doi:10.1093/mnras/stad3729, arXiv:2311.14801.
  96. Uncovering the Invisible: A Study of Gaia18ajz, a Candidate Black Hole Revealed by Microlensing. arXiv e-prints , arXiv:2403.09006doi:10.48550/arXiv.2403.09006, arXiv:2403.09006.
  97. Wide Twin Binaries are Extremely Eccentric: Evidence of Twin Binary Formation in Circumbinary Disks. ApJL 933, L32. doi:10.3847/2041-8213/ac7c70, arXiv:2205.05690.
  98. Very wide companion fraction from Gaia DR2: A weak or no enhancement for hot Jupiter hosts, and a strong enhancement for contact binaries. MNRAS 497, 2250–2259. doi:10.1093/mnras/staa2124, arXiv:2007.03688.
  99. Dynamical masses across the Hertzsprung-Russell diagram. MNRAS 528, 4272–4288. doi:10.1093/mnras/stae297, arXiv:2308.08584.
  100. Wide binaries from the H3 survey: the thick disc and halo have similar wide binary fractions. MNRAS 513, 754–767. doi:10.1093/mnras/stac650, arXiv:2111.01788.
  101. The non-monotonic, strong metallicity dependence of the wide-binary fraction. MNRAS 501, 4329–4343. doi:10.1093/mnras/staa3854, arXiv:2010.02920.
  102. The eccentricity distribution of wide binaries and their individual measurements. MNRAS 512, 3383–3399. doi:10.1093/mnras/stac675, arXiv:2111.01789.
  103. Lifetime of short-period binaries measured from their Galactic kinematics. MNRAS 493, 2271–2286. doi:10.1093/mnras/staa400, arXiv:1909.06375.
  104. Hyper-runaway and hypervelocity white dwarf candidates in Gaia Data Release 3: Possible remnants from Ia/Iax supernova explosions or dynamical encounters. MNRAS 518, 6223–6237. doi:10.1093/mnras/stac3488, arXiv:2209.09915.
  105. Uncovering astrometric black hole binaries with massive main-sequence companions with Gaia. A&A 658, A129. doi:10.1051/0004-6361/202141866, arXiv:2111.06427.
  106. A search for compact object companions to high mass function single-lined spectroscopic binaries in Gaia DR3. MNRAS 521, 5927–5939. doi:10.1093/mnras/stad909, arXiv:2207.05086.
  107. Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algol’s Period Confirmed. PLoS ONE 10, 44140. doi:10.1371/journal.pone.0144140, arXiv:1601.06990.
  108. A Catalog of Wide Binary and Multiple Systems of Bright Stars from Gaia-DR2 and the Virtual Observatory. AJ 157, 78. doi:10.3847/1538-3881/aafacc, arXiv:1901.03730.
  109. Gaia Data Release 3. Properties and validation of the radial velocities. A&A 674, A5. doi:10.1051/0004-6361/202244220, arXiv:2206.05902.
  110. Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly. A&A 623, A72. doi:10.1051/0004-6361/201834371, arXiv:1811.08902.
  111. Metallicity dependence of black hole main sequence binaries detectable with Gaia. arXiv e-prints , arXiv:1810.09721doi:10.48550/arXiv.1810.09721, arXiv:1810.09721.
  112. A Gaia view of the optical and X-ray luminosities of compact binary millisecond pulsars. MNRAS 525, 3963–3985. doi:10.1093/mnras/stad2485, arXiv:2308.07377.
  113. A gap in the double white dwarf separation distribution caused by the common-envelope evolution: astrometric evidence from Gaia. MNRAS 515, 1228–1246. doi:10.1093/mnras/stac1686, arXiv:2203.03659.
  114. The formation of very wide binaries during the star cluster dissolution phase. MNRAS 404, 1835–1848. doi:10.1111/j.1365-2966.2010.16399.x, arXiv:1001.3969.
  115. Dark lens candidates from Gaia Data Release 3. arXiv e-prints , arXiv:2401.13759doi:10.48550/arXiv.2401.13759, arXiv:2401.13759.
  116. LISA verification binaries with updated distances from Gaia Data Release 2. MNRAS 480, 302–309. doi:10.1093/mnras/sty1545, arXiv:1805.00482.
  117. A Reanalysis of the Isolated Black Hole Candidate OGLE-2011-BLG-0462/MOA-2011-BLG-191. ApJ 955, 116. doi:10.3847/1538-4357/aced4a, arXiv:2308.03302.
  118. An Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing. ApJL 933, L23. doi:10.3847/2041-8213/ac7442, arXiv:2202.01903.
  119. Physical Parameters of 11,100 Short-period ASAS-SN Eclipsing Contact Binaries. ApJS 271, 32. doi:10.3847/1538-4365/ad226a, arXiv:2401.15986.
  120. Double star data in the HIPPARCOS Catalogue. A&A 323, L53–L56.
  121. Re-normalising the astrometric chi-square in gaia dr2. Gaia Technical Note: GAIA-C3-TN-LU-LL-124-01 .
  122. Wide Binaries as a Modified Gravity test: prospects for detecting triple-system contamination. The Open Journal of Astrophysics 6, E2. doi:10.21105/astro.2210.07781, arXiv:2210.07781.
  123. Spectroscopic Follow-up of Gaia Exoplanet Candidates: Impostor Binary Stars Invade the Gaia DR3 Astrometric Exoplanet Candidates. AJ 165, 266. doi:10.3847/1538-3881/acd53d, arXiv:2305.08623.
  124. Inverse dynamical population synthesis. Constraining the initial conditions of young stellar clusters by studying their binary populations. A&A 543, A8. doi:10.1051/0004-6361/201118231, arXiv:1205.1508.
  125. TOI-1259Ab - a gas giant planet with 2.7 per cent deep transits and a bound white dwarf companion. MNRAS 507, 4132–4148. doi:10.1093/mnras/stab2129, arXiv:2101.02707.
  126. Hunting black holes with Gaia. MNRAS 470, 2611–2616. doi:10.1093/mnras/stx1410, arXiv:1704.03455.
  127. Detecting New Visual Binaries in Gaia DR3 with Gaia and Two Micron All Sky Survey (2MASS) Photometry. I. New Candidate Binaries within 200 pc of the Sun. AJ 166, 218. doi:10.3847/1538-3881/acffb0, arXiv:2310.02256.
  128. An update of SB9 orbits using HERMES/Mercator radial velocities. arXiv e-prints , arXiv:2312.09151doi:10.48550/arXiv.2312.09151, arXiv:2312.09151.
  129. The Tycho-Gaia astrometric solution . How to get 2.5 million parallaxes with less than one year of Gaia data. A&A 574, A115. doi:10.1051/0004-6361/201425310, arXiv:1412.8770.
  130. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ 270, 365–370. doi:10.1086/161130.
  131. Cygnus X-1 contains a 21-solar mass black hole—Implications for massive star winds. Science 371, 1046–1049. doi:10.1126/science.abb3363, arXiv:2102.09091.
  132. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars. ApJS 230, 15. doi:10.3847/1538-4365/aa6fb6, arXiv:1606.05347.
  133. The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. ApJ 875, 61. doi:10.3847/1538-4357/ab0d88, arXiv:1808.02116.
  134. Improving Distances to Binary Millisecond Pulsars with Gaia. ApJ 954, 89. doi:10.3847/1538-4357/acec75, arXiv:2210.10816.
  135. Improving White Dwarfs as Chronometers with Gaia Parallaxes and Spectroscopic Metallicities. ApJ 929, 26. doi:10.3847/1538-4357/ac5ac0, arXiv:2203.08971.
  136. Gaia Data Release 3. The first Gaia catalogue of eclipsing-binary candidates. A&A 674, A16. doi:10.1051/0004-6361/202245330, arXiv:2211.00929.
  137. Systematic Errors as a Source of Mass Discrepancy in Black Hole Microlensing Event OGLE-2011-BLG-0462. ApJL 937, L24. doi:10.3847/2041-8213/ac90bb, arXiv:2207.10729.
  138. Spectroscopic follow-up of black hole and neutron star candidates in ellipsoidal variables from Gaia DR3. MNRAS 524, 4367–4383. doi:10.1093/mnras/stad2130, arXiv:2304.07324.
  139. ESPRESSO Observations of Gaia BH1: High-precision Orbital Constraints and no Evidence for an Inner Binary. PASP 136, 014202. doi:10.1088/1538-3873/ad1ba7, arXiv:2312.05313.
  140. Not That Simple: The Metallicity Dependence of the Wide Binary Fraction Changes with Separation and Stellar Mass. ApJ 931, 124. doi:10.3847/1538-4357/ac6c84, arXiv:2205.04444.
  141. White Dwarf Pollution; One Star or Two? arXiv e-prints , arXiv:2403.08870doi:10.48550/arXiv.2403.08870, arXiv:2403.08870.
  142. An observationally derived kick distribution for neutron stars in binary systems. MNRAS 521, 2504–2524. doi:10.1093/mnras/stad680, arXiv:2303.01059.
  143. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass. AJ 153, 259. doi:10.3847/1538-3881/aa6d55, arXiv:1611.07883.
  144. The Origin and Evolution of Multiple Star Systems, in: Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M. (Eds.), Protostars and Planets VII, p. 275. doi:10.48550/arXiv.2203.10066, arXiv:2203.10066.
  145. Comoving Stars in Gaia DR1: An Abundance of Very Wide Separation Comoving Pairs. AJ 153, 257. doi:10.3847/1538-3881/aa6ffd, arXiv:1612.02440.
  146. A Volume-limited Sample of Cataclysmic Variables from Gaia DR2: Space Density and Population Properties. MNRAS 494, 3799–3827. doi:10.1093/mnras/staa764, arXiv:1907.13152.
  147. Distances and absolute magnitudes of dwarf novae: murmurs of period bounce. MNRAS 411, 2695–2716. doi:10.1111/j.1365-2966.2010.17881.x.
  148. Astrometric identification of nearby binary stars - I. Predicted astrometric signals. MNRAS 513, 2437–2456. doi:10.1093/mnras/stac959, arXiv:2111.10380.
  149. Astrometric identification of nearby binary stars - II. Astrometric binaries in the Gaia Catalogue of Nearby Stars. MNRAS 513, 5270–5289. doi:10.1093/mnras/stac1147, arXiv:2202.06963.
  150. Discovery of the first resolved triple white dwarf. MNRAS 483, 901–907. doi:10.1093/mnras/sty3149, arXiv:1811.07752.
  151. Astrometric Exoplanet Detection with Gaia. ApJ 797, 14. doi:10.1088/0004-637X/797/1/14, arXiv:1411.1173.
  152. GAIA: Composition, formation and evolution of the Galaxy. A&A 369, 339–363. doi:10.1051/0004-6361:20010085, arXiv:astro-ph/0101235.
  153. The HIPPARCOS Catalogue. A&A 323, L49–L52.
  154. Testing modified gravity with wide binaries in Gaia DR2. MNRAS 488, 4740–4752. doi:10.1093/mnras/stz1898, arXiv:1905.09619.
  155. Wide Binaries from GAIA EDR3: preference for GR over MOND? The Open Journal of Astrophysics 6, 4. doi:10.21105/astro.2205.02846, arXiv:2205.02846.
  156. Gaia DR3 documentation Chapter 7: Non-single stars. Gaia DR3 documentation, European Space Agency; Gaia Data Processing and Analysis Consortium.
  157. SB9: The ninth catalogue of spectroscopic binary orbits. A&A 424, 727–732. doi:10.1051/0004-6361:20041213, arXiv:astro-ph/0406573.
  158. Precise Ages of Field Stars from White Dwarf Companions in Gaia DR2. ApJS 253, 58. doi:10.3847/1538-4365/abe468, arXiv:2012.04890.
  159. Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae. MNRAS 489, 1489–1508. doi:10.1093/mnras/stz1618, arXiv:1902.05061.
  160. A Survey of Stellar Families: Multiplicity of Solar-type Stars. ApJS 190, 1–42. doi:10.1088/0067-0049/190/1/1, arXiv:1007.0414.
  161. Constraining dark matter substructure with Gaia wide binaries. MNRAS 525, 5813–5830. doi:10.1093/mnras/stad2583.
  162. Physical properties of AM CVn stars: New insights from Gaia DR2. A&A 620, A141. doi:10.1051/0004-6361/201834261, arXiv:1810.06548.
  163. The relation between white dwarf mass and orbital period in wide binary radio pulsars. MNRAS 273, 731–741. doi:10.1093/mnras/273.3.731.
  164. Dynamical formation of Gaia BH1 in a young star cluster. MNRAS 526, 740–749. doi:10.1093/mnras/stad2757, arXiv:2306.14679.
  165. The Orbital Geometries and Stellar Obliquities of Exoplanet-hosting Multistar Systems. AJ 167, 126. doi:10.3847/1538-3881/ad1bed, arXiv:2401.04173.
  166. Precise dynamical masses of new directly imaged companions from combining relative astrometry, radial velocities, and HIPPARCOS-Gaia eDR3 accelerations. A&A 668, A140. doi:10.1051/0004-6361/202244633, arXiv:2209.12957.
  167. A Survey of the High Order Multiplicity of Nearby Solar-type Binary Stars with Robo-AO. ApJ 799, 4. doi:10.1088/0004-637X/799/1/4, arXiv:1411.0682.
  168. Gaia Early Data Release 3. Photometric content and validation. A&A 649, A3. doi:10.1051/0004-6361/202039587, arXiv:2012.01916.
  169. Gaia Data Release 3. All-sky classification of 12.4 million variable sources into 25 classes. A&A 674, A14. doi:10.1051/0004-6361/202245591, arXiv:2211.17238.
  170. No X-Rays or Radio from the Nearest Black Holes and Implications for Future Searches. arXiv e-prints , arXiv:2311.05685doi:10.48550/arXiv.2311.05685, arXiv:2311.05685.
  171. Spectroscopic Evidence for a 5.4 Minute Orbital Period in HM Cancri. ApJL 711, L138–L142. doi:10.1088/2041-8205/711/2/L138, arXiv:1003.0658.
  172. The value-added catalogue of ASAS-SN eclipsing binaries: parameters of 30 000 detached systems. MNRAS 517, 2190–2213. doi:10.1093/mnras/stac2520, arXiv:2205.05687.
  173. High mass function ellipsoidal variables in the Gaia Focused Product Release: searching for black hole candidates in the binary zoo. arXiv e-prints , arXiv:2401.09531doi:10.48550/arXiv.2401.09531, arXiv:2401.09531.
  174. Born to Be Wide: The Distribution of Wide Binaries in the Field and Soft Binaries in Clusters. ApJ 955, 134. doi:10.3847/1538-4357/ace2c6, arXiv:2304.02029.
  175. On the accuracy of mass measurement for microlensing black holes as seen by Gaia and OGLE. MNRAS 476, 2013–2028. doi:10.1093/mnras/sty356, arXiv:1802.03258.
  176. An Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing. ApJ 933, 83. doi:10.3847/1538-4357/ac739e, arXiv:2201.13296.
  177. Triage of the Gaia DR3 astrometric orbits - I. A sample of binaries with probable compact companions. MNRAS 518, 2991–3003. doi:10.1093/mnras/stac3290, arXiv:2209.00828.
  178. Triage of the Gaia DR3 astrometric orbits. II. A census of white dwarfs. arXiv e-prints , arXiv:2309.15143doi:10.48550/arXiv.2309.15143, arXiv:2309.15143.
  179. Triage of astrometric binaries - how to find triple systems and dormant black hole secondaries in the Gaia orbits. MNRAS 487, 5610–5617. doi:10.1093/mnras/stz1636, arXiv:1905.08542.
  180. Population Synthesis of Black Hole Binaries with Normal-star Companions. I. Detached Systems. ApJ 885, 151. doi:10.3847/1538-4357/ab4816, arXiv:1909.11328.
  181. Dynamical Evolution of White Dwarfs in Triples in the Era of Gaia. ApJL 955, L14. doi:10.3847/2041-8213/acf76b, arXiv:2306.13130.
  182. Very Wide Binaries and Other Comoving Stellar Companions: A Bayesian Analysis of the Hipparcos Catalogue. ApJS 192, 2. doi:10.1088/0067-0049/192/1/2, arXiv:1007.0425.
  183. Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae. ApJ 865, 15. doi:10.3847/1538-4357/aad55b, arXiv:1804.11163.
  184. Detectability of Black Hole Binaries with Gaia: Dependence on Binary Evolution Models. ApJ 928, 13. doi:10.3847/1538-4357/ac5329, arXiv:2112.04798.
  185. Visual binary orbits and masses POST HIPPARCOS. A&A 341, 121–140.
  186. Observing binaries with Gaia - the global picture, in: Hilditch, R.W., Hensberge, H., Pavlovski, K. (Eds.), Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, pp. 413–421.
  187. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge. AcA 66, 405–420. doi:10.48550/arXiv.1701.03105, arXiv:1701.03105.
  188. Parallax Systematics and Photocenter Motions of Benchmark Eclipsing Binaries in Gaia EDR3. ApJL 907, L33. doi:10.3847/2041-8213/abdaad, arXiv:2101.03425.
  189. Combing the brown dwarf desert with Gaia DR3. MNRAS 526, 5155–5171. doi:10.1093/mnras/stad3041, arXiv:2310.02695.
  190. Compact binary formation in open star clusters - I. High formation efficiency of Gaia BHs and their multiplicities. MNRAS 527, 4031–4039. doi:10.1093/mnras/stad3294, arXiv:2303.05743.
  191. Search for a Black Hole Binary in Gaia DR3 Astrometric Binary Stars with Spectroscopic Data. ApJ 946, 79. doi:10.3847/1538-4357/acbf36, arXiv:2209.05632.
  192. The Separation Distribution of Ultrawide Binaries across Galactic Populations. ApJS 246, 4. doi:10.3847/1538-4365/ab54c4, arXiv:1909.04765.
  193. Eccentricity distribution of wide low-mass binaries. MNRAS 496, 987–993. doi:10.1093/mnras/staa1639, arXiv:2004.06570.
  194. Architecture of Hierarchical Stellar Systems and Their Formation. Universe 7, 352. doi:10.3390/universe7090352, arXiv:2109.09118.
  195. Exploring Thousands of Nearby Hierarchical Systems with Gaia and Speckle Interferometry. AJ 165, 180. doi:10.3847/1538-3881/acc464.
  196. Spectroscopic Orbits of Subsystems in Multiple Stars. X (Summary). AJ 165, 220. doi:10.3847/1538-3881/acca19, arXiv:2304.02706.
  197. Eccentricity distribution of wide binaries. MNRAS 456, 2070–2079. doi:10.1093/mnras/stv2825, arXiv:1512.00278.
  198. Tertiary companions to close spectroscopic binaries. A&A 450, 681–693. doi:10.1051/0004-6361:20054427, arXiv:astro-ph/0601518.
  199. On the distribution of orbital eccentricities for wide visual binary stars. Astronomy Letters 24, 178–179.
  200. On the origin of binaries with twin components. A&A 360, 997–1002.
  201. A population synthesis fitting of the Gaia resolved white dwarf binary population within 100 pc. MNRAS 511, 5462–5474. doi:10.1093/mnras/stac374, arXiv:2202.04199.
  202. Exploring the brown dwarf desert with precision radial velocities and Gaia DR3 astrometric orbits. A&A 680, A16. doi:10.1051/0004-6361/202347578, arXiv:2310.02758.
  203. Unseen astrometric companions of stars. ARA&A 13, 295–333. doi:10.1146/annurev.aa.13.090175.001455.
  204. Discovery and characterization of five new eclipsing AM CVn systems. MNRAS 512, 5440–5461. doi:10.1093/mnras/stab2421, arXiv:2107.07573.
  205. Astrometric mass measurement of compact companions in binary systems with Gaia. A&A 665, A111. doi:10.1051/0004-6361/202243684, arXiv:2307.12645.
  206. Absolute magnitudes of cataclysmic variables. MNRAS 227, 23–73. doi:10.1093/mnras/227.1.23.
  207. Noninteracting Black Hole Binaries with Gaia and LAMOST. ApJ 905, 134. doi:10.3847/1538-4357/abc699, arXiv:2006.08317.
  208. Joint Constraints on Exoplanetary Orbits from Gaia DR3 and Doppler Data. AJ 164, 196. doi:10.3847/1538-3881/ac9126, arXiv:2209.05516.
  209. The Masses of a Sample of Radial-velocity Exoplanets with Astrometric Measurements. Research in Astronomy and Astrophysics 23, 055022. doi:10.1088/1674-4527/accb7e, arXiv:2303.12409.
  210. Wide-binary Stars Formed in the Turbulent Interstellar Medium. ApJL 949, L28. doi:10.3847/2041-8213/acd6f7, arXiv:2303.16224.
  211. Dark passengers in stellar surveys. MNRAS 481, 930–937. doi:10.1093/mnras/sty2327, arXiv:1807.00835.
  212. Detecting Black Hole Binaries by Gaia. ApJ 861, 21. doi:10.3847/1538-4357/aac5ec, arXiv:1710.09839.
  213. Wide post-common envelope binaries containing ultramassive white dwarfs: evidence for efficient envelope ejection in massive asymptotic giant branch stars. MNRAS 527, 11719–11739. doi:10.1093/mnras/stad4005, arXiv:2309.15905.
  214. The End of the MACHO Era: Limits on Halo Dark Matter from Stellar Halo Wide Binaries. ApJ 601, 311–318. doi:10.1086/380562, arXiv:astro-ph/0307437.
  215. The Long-term Evolution and Appearance of Type Iax Postgenitor Stars. ApJ 872, 29. doi:10.3847/1538-4357/aafb34, arXiv:1812.08793.
  216. Evidence for mass-dependent peculiar velocities in compact object binaries: towards better constraints on natal kicks. MNRAS 525, 1498–1519. doi:10.1093/mnras/stad2226, arXiv:2307.06430.
Citations (10)

Summary

  • The paper shows that Gaia’s high-precision astrometry has revolutionized binary star detection, expanding discovery to wider separations and diverse mass ratios.
  • The paper leverages astrometric noise metrics like RUWE to effectively identify binaries, including systems with non-accreting compact objects.
  • The paper provides orbital solutions from Gaia’s DR3 that refine our understanding of stellar evolution and binary demographics.

Overview of "Gaia's Binary Star Renaissance"

This paper, authored by Kareem El-Badry, discusses significant advancements in our understanding of binary star systems, primarily fueled by the high-precision astrometric data from the Gaia mission. Binaries are fundamentally important in astrophysics as they provide critical data for measuring stellar masses and radii, which are essential for testing and refining stellar evolution models. Furthermore, binaries are the progenitors of various exotic astrophysical phenomena, including type Ia supernovae and gamma-ray bursts.

Gaia's Contributions to Binary Star Studies

The Gaia mission, with its unprecedented astrometric precision extending beyond a billion stars in the Milky Way, has significantly expanded the detection horizon for binary systems, probing wider separations and a broader range of mass ratios than previous surveys could achieve. Gaia's data enables better census of binary populations, contributing to the discovery of rare objects and a deeper understanding of stellar dynamics.

The paper highlights several specific areas where Gaia's data have been transformative:

  • Wide Binaries: Gaia has expanded the ability to resolve binaries at unprecedented distances and separations, down to about 1000 AU for binaries at 1 kpc. It has provided insights into the formation environments of wide binaries by characterizing their separations and mass ratios, challenging previous notions about their formation and evolution.
  • Astrometric Noise and Binarity: Binaries can be identified by deviations from expected single-star astrometric models, quantified through parameters like RUWE. Gaia enables the identification of binary systems where traditional imaging and spectroscopy might fail, especially highlighting binaries with non-accreting compact objects.
  • Astrometric and Radial Velocity Orbits: Gaia's third data release included orbital solutions for astrometric and spectroscopic binaries, significantly increasing the sample of small-separation binaries with well-constrained orbits.

Key Findings and Implications

The research underscores that Gaia data has enabled more precise characterization of binary star systems across a range of separations. The implications of these results span both practical and theoretical realms. Practically, these insights enhance our understanding of the binary star demographics in the Milky Way, influence stellar population synthesis models, and improve predictions for merging compact objects that contribute to the gravitational wave signals.

Theoretically, the paper speculates that future Gaia data releases could further refine our understanding of binary interactions and evolution. The availability of epoch astrometry in future releases will likely enhance the discovery of systems with high dynamical complexity, such as hierarchical triples or compact object binaries that mimic binary signatures at certain periods.

In summary, the paper presents the Gaia mission as a pivotal step forward in binary star astrophysics, opening pathways for more exhaustive studies in binary formation, stellar dynamics, and the role of binaries in broader astronomical contexts. The anticipation for Gaia's continued contributions highlights the mission's potential to redefine the landscape of astrophysical research on binary systems.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 tweets and received 154 likes.

Upgrade to Pro to view all of the tweets about this paper: