Papers
Topics
Authors
Recent
2000 character limit reached

Cooperation in a non-Ergodic World on a Network -- Insurance and Beyond (2403.12095v1)

Published 15 Mar 2024 in physics.soc-ph, nlin.AO, and nlin.PS

Abstract: Cooperation between individuals is emergent in all parts of society, yet mechanistic reasons for this emergence is ill understood in the literature. A specific example of this is insurance. Recent work has, though, shown that assuming the risk individuals face is proportional to their wealth and optimising the time average growth rate rather than the ensemble average results in a non-zero-sum game, where both parties benefit from cooperation through insurance contracts. In a paper, Peters and Skjold present a simple agent-based model and show how, over time, agents that enter into such cooperatives outperform agents that do not. Here, we extend this work by restricting the possible connections between agents via a lattice network. Under these restrictions, we still find that all agents profit from cooperating through insurance. We, though, further find that clusters of poor and rich agents emerge endogenously on the two-dimensional map and that wealth inequalities persist for a long duration, consistent with the phenomenon known as the poverty trap. By tuning the parameters which control the risk levels, we simulate both highly advantageous and extremely risky gambles and show that despite the qualitative shift in the type of risk, the findings are consistent.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. W.-B. Zhang, Synergetic Economics (Springer Berlin Heidelberg, 1991).
  2. P. Allen, Self-organization in economic systems (Edward Elgar Publishing, 2007) pp. 1111–1148.
  3. J. Foster, Economics and the Self-Organisation Approach: Alfred Marshall Revisited?, The Economic Journal 103, 975 (1993), https://academic.oup.com/ej/article-pdf/103/419/975/27042593/ej0975.pdf .
  4. O. Peters and A. Adamou, Insurance makes wealth grow faster (2017), arXiv:1507.04655 [q-fin.RM] .
  5. O. Peters, Insurance as an ergodicity problem, Annals of Actuarial Science 17, 215–218 (2023).
  6. O. Peters and B. Skjold, LMLhub/AAS_editorial_figures_July2023: v1.0.0 initial release (2023), code published on zenodo.
  7. E. Ising, Beitrag zur theorie des ferromagnetismus, Zeitschrift für Physik 31, 253–258 (1925).
  8. L. Onsager, Crystal statistics. i. a two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).
  9. M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359, 826–829 (1992).
  10. K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community, International Journal of Modern Physics C 11, 1157 (2000).
  11. D. Stauffer, Social applications of two-dimensional ising models, American Journal of Physics 76, 470–473 (2008).
  12. D. Sornette, Physics and financial economics (1776–2014): puzzles, ising and agent-based models, Reports on Progress in Physics 77, 062001 (2014).
  13. T. C. Schelling, Dynamic models of segregation, The Journal of Mathematical Sociology 1, 143 (1971).
  14. O. Peters and A. Adamou, Ergodicity economics lecture notes (2018).
  15. O. Peters and M. Gell-Mann, Evaluating gambles using dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 023103 (2016).
  16. K. J. Arrow, The theory of risk aversion, Essays in the theory of risk-bearing , 90 (1971).
  17. O. Peters and A. Adamou, The ergodicity solution of the cooperation puzzle, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 10.1098/rsta.2020.0425 (2022).
  18. A. Vanhoyweghen and V. Ginis, Human decision-making in a non-ergodic additive environment, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 479, 10.1098/rspa.2023.0544 (2023).
  19. B. Skjold and O. Peters, Insurance as an ergodicity problem , https://ergodicityeconomics.com/2023/08/08/insurance-as-an-ergodicity-problem/ (2023a), [Online; accessed 11-August-2023].
  20. Upon acceptance of the article, our simulation code will be made available on zenodo.
  21. M. Ghatak, Theories of poverty traps and anti-poverty policies, The World Bank Economic Review 29, S77–S105 (2015).
  22. C. Boix, Origins and persistence of economic inequality, Annual Review of Political Science 13, 489 (2010).
  23. F. Stollmeier and J. Nagler, Unfair and anomalous evolutionary dynamics from fluctuating payoffs, Phys. Rev. Lett. 120, 058101 (2018).
  24. F. Stollmeier, Evolutionary Dynamics in Changing Environments, Ph.D. thesis, Georg-August-Universität Göttingen (2018).
  25. C. A. Aktipis, L. Cronk, and R. de Aguiar, Risk-pooling and herd survival: An agent-based model of a maasai gift-giving system, Human Ecology 39, 131 (2011).
  26. G. Dahl and A. Hjort, Having herds: Pastoral herd growth and household economy (Department of Social Anthropology, University of Stockholm, 1976).
  27. M. A. Nowak, Five rules for the evolution of cooperation, Science 314, 1560–1563 (2006).
  28. B. Skjold and O. Peters, Personal communication (2023b).
  29. P. Chvykov and J. N. Warren, Is salary just a negative insurance premium? (2024), presentation given at Ergodicity Economics Conference.
  30. R. E. Lucas, Asset prices in an exchange economy, Econometrica 46, 1429 (1978).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.