Papers
Topics
Authors
Recent
2000 character limit reached

Process mining for self-regulated learning assessment in e-learning (2403.12068v1)

Published 11 Feb 2024 in cs.CY and cs.LG

Abstract: Content assessment has broadly improved in e-learning scenarios in recent decades. However, the eLearning process can give rise to a spatial and temporal gap that poses interesting challenges for assessment of not only content, but also students' acquisition of core skills such as self-regulated learning. Our objective was to discover students' self-regulated learning processes during an eLearning course by using Process Mining Techniques. We applied a new algorithm in the educational domain called Inductive Miner over the interaction traces from 101 university students in a course given over one semester on the Moodle 2.0 platform. Data was extracted from the platform's event logs with 21629 traces in order to discover students' self-regulation models that contribute to improving the instructional process. The Inductive Miner algorithm discovered optimal models in terms of fitness for both Pass and Fail students in this dataset, as well as models at a certain level of granularity that can be interpreted in educational terms, which are the most important achievement in model discovery. We can conclude that although students who passed did not follow the instructors' suggestions exactly, they did follow the logic of a successful self-regulated learning process as opposed to their failing classmates. The Process Mining models also allow us to examine which specific actions the students performed, and it was particularly interesting to see a high presence of actions related to forum-supported collaborative learning in the Pass group and an absence of those in the Fail group.

Citations (127)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.