2000 character limit reached
Kernel Modelling of Fading Memory Systems (2403.11945v2)
Published 18 Mar 2024 in eess.SY, cs.SY, and math.OC
Abstract: The paper is a follow-up of the recently introduced kernel-based framework to identify nonlinear input-output systems regularized by desirable input-output incremental properties. Assuming that the system has fading memory, we propose to learn the functional that maps the past input to the present output rather than the operator mapping input trajectories to output trajectories. While retaining the benefits of the previously proposed framework, this modification simplifies the selection of the kernel, enforces causality, and enables temporal simulation.
- “Fading memory and the problem of approximating nonlinear operators with Volterra series” In IEEE Transactions on Circuits and Systems 32.11, 1985, pp. 1150–1161 DOI: 10.1109/TCS.1985.1085649
- “Echo state networks are universal” In Neural Networks 108, 2018, pp. 495–508 DOI: 10.1016/j.neunet.2018.08.025
- “Neural Systems as Nonlinear Filters” In Neural Computation 12, 2000 DOI: 10.1162/089976600300015123
- Thiago B. Burghi, Maarten Schoukens and Rodolphe Sepulchre “System identification of biophysical neuronal models” arXiv, 2020 DOI: 10.48550/arXiv.2012.07691
- Nicholas M. Boffi, Stephen Tu and Jean-Jacques Slotine “Nonparametric Adaptive Control and Prediction: Theory and Randomized Algorithms” In 2021 60th IEEE Conference on Decision and Control (CDC) Austin, TX, USA: IEEE, 2021, pp. 2935–2942 DOI: 10.1109/CDC45484.2021.9682907
- Gianluigi Pillonetto and Giuseppe De Nicolao “A New Kernel-Based Approach for Linear System Identification” In Automatica 46.1, 2010, pp. 81–93 DOI: 10.1016/j.automatica.2009.10.031
- Gianluigi Pillonetto, Minh Ha Quang and Alessandro Chiuso “A New Kernel-Based Approach for NonlinearSystem Identification” In IEEE Transactions on Automatic Control 56.12, 2011, pp. 2825–2840 DOI: 10.1109/TAC.2011.2131830
- “Kernel Methods in System Identification, Machine Learning and Function Estimation: A Survey” In Automatica 50.3, 2014, pp. 657–682 DOI: 10.1016/j.automatica.2014.01.001
- Francesco Dinuzzo “Kernels for Linear Time Invariant System Identification” In SIAM Journal on Control and Optimization 53.5 Society for Industrial and Applied Mathematics, 2015, pp. 3299–3317 DOI: 10.1137/130920319
- “Kernel Methods for the Approximation of Nonlinear Systems” In SIAM Journal on Control and Optimization 55.4, 2017, pp. 2460–2492 DOI: 10.1137/14096815X
- Mohammad Khosravi and Roy S. Smith “On Robustness of Kernel-Based Regularized System Identification” In IFAC-PapersOnLine 54.7, 19th IFAC Symposium on System Identification SYSID 2021, 2021, pp. 749–754 DOI: 10.1016/j.ifacol.2021.08.451
- Mohammad Khosravi and Roy S. Smith “Kernel-Based Identification with Frequency Domain Side-Information” In Automatica 150, 2023, pp. 110813 DOI: 10.1016/j.automatica.2022.110813
- Lennart Ljung, Tianshi Chen and Biqiang Mu “A Shift in Paradigm for System Identification” In International Journal of Control 93.2 Taylor & Francis, 2020, pp. 173–180 DOI: 10.1080/00207179.2019.1578407
- “Robust EM Kernel-Based Methods for Linear System Identification” In Automatica 67, 2016, pp. 114–126 DOI: 10.1016/j.automatica.2016.01.036
- M. Gevers “Identification for Control” In Annual Reviews in Control 20, 1996, pp. 95–106 DOI: 10.1016/S1367-5788(97)00008-4
- Max Revay, Ruigang Wang and Ian R. Manchester “Recurrent Equilibrium Networks: Unconstrained Learning of Stable and Robust Dynamical Models” In 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 2282–2287 DOI: 10.1109/CDC45484.2021.9683054
- Max Revay, Ruigang Wang and Ian R. Manchester “A Convex Parameterization of Robust Recurrent Neural Networks” In IEEE Control Systems Letters 5.4, 2021, pp. 1363–1368 DOI: 10.1109/LCSYS.2020.3038221
- “Lipschitz Recurrent Neural Networks”, 2023 URL: https://openreview.net/forum?id=-N7PBXqOUJZ
- “Monotone Operator Equilibrium Networks” In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20 Red Hook, NY, USA: Curran Associates Inc., 2020, pp. 10718–10728
- “Contracting Implicit Recurrent Neural Networks: Stable Models with Improved Trainability” In Proceedings of the 2nd Conference on Learning for Dynamics and Control PMLR, 2020, pp. 393–403 URL: https://proceedings.mlr.press/v120/revay20a.html
- “Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks” In Proceedings of the 33rd International Conference on Neural Information Processing Systems Red Hook, NY, USA: Curran Associates Inc., 2019, pp. 11427–11438
- Henk J. Waarde and Rodolphe Sepulchre “Kernel-based models for system analysis” arXiv, 2021 arXiv: http://arxiv.org/abs/2110.11735
- Rodolphe Sepulchre, Thomas Chaffey and Fulvio Forni “On the incremental form of dissipativity” In IFAC-PapersOnLine 55.30, 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, 2022, pp. 290–294 DOI: 10.1016/j.ifacol.2022.11.067
- “A quantitative description of membrane current and its application to conduction and excitation in nerve” In The Journal of Physiology 117.4, 1952, pp. 500–544 URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/
- Jeff S. Shamma and Rongze Zhao “Fading-memory feedback systems and robust stability” In Automatica 29.1, 1993, pp. 191–200 DOI: 10.1016/0005-1098(93)90182-S
- I.W. Sandberg “Approximately Finite Memory and the Circle Criterion” In IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41.7, 1994, pp. 473–476 DOI: 10.1109/81.298359
- Lukas Gonon, Lyudmila Grigoryeva and Juan-Pablo Ortega “Reservoir Kernels and Volterra Series”, 2022 arXiv: http://arxiv.org/abs/2212.14641
- “The identification of nonlinear discrete-time fading-memory systems using neural network models” Conference Name: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing In IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 41.11, 1994, pp. 740–751 DOI: 10.1109/82.331544
- Vern I. Paulsen and Mrinal Raghupathi “An Introduction to the Theory of Reproducing Kernel Hilbert Spaces”, Cambridge Studies in Advanced Mathematics Cambridge: Cambridge University Press, 2016 DOI: 10.1017/CBO9781316219232
- “Universal Kernels on Non-Standard Input Spaces” In Advances in Neural Information Processing Systems 23 Curran Associates, Inc., 2010 URL: https://papers.nips.cc/paper/2010/hash/4e0cb6fb5fb446d1c92ede2ed8780188-Abstract.html
- Charles A. Micchelli and Massimiliano Pontil “On Learning Vector-Valued Functions” In Neural Computation 17.1, 2005, pp. 177–204 DOI: 10.1162/0899766052530802
- “Universal Multi-Task Kernels” In Journal of Machine Learning Research 9.52, 2008, pp. 1615–1646 URL: http://jmlr.org/papers/v9/caponnetto08a.html
- “On the computational power of circuits of spiking neurons” In Journal of Computer and System Sciences 69.4, 2004, pp. 593–616 DOI: 10.1016/j.jcss.2004.04.001
- Paulo Lopes Santos and T-P Azevedo Perdicoúlis “A Non-Parametric LPV Approach to the Indentification of Linear Periodic Systems” In IFAC-PapersOnLine 54.8, 4th IFAC Workshop on Linear Parameter Varying Systems LPVS 2021, 2021, pp. 13–19 DOI: 10.1016/j.ifacol.2021.08.574
- Ehsan Sobhani Tehrani and Robert E. Kearney “A Non-Parametric Linear Parameter Varying Approach for Identification of Linear Time-Varying Systems.” In IFAC-PapersOnLine 48.28, 17th IFAC Symposium on System Identification SYSID 2015, 2015, pp. 733–738 DOI: 10.1016/j.ifacol.2015.12.217
- Ehsan Sobhani Tehrani and Robert E. Kearney “A Non-Parametric Approach for Identification of Parameter Varying Hammerstein Systems” In IEEE Access 10, 2022, pp. 6348–6362 DOI: 10.1109/ACCESS.2022.3141704
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.